Búsqueda

Optimal dividend problem with a nonlinear regular-singular stochastic control

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20130024448</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20130829115308.0</controlfield>
    <controlfield tag="008">130731e20130506esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130010434</subfield>
      <subfield code="a">Chen, Mi</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal dividend problem with a nonlinear regular-singular stochastic control</subfield>
      <subfield code="c">Mi Chen, Xiaofan Peng,  Junyi Guo</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, a problem with a nonlinear regular-singular stochastic control is studied for a big insurance portfolio. We assume that the reinsurance premium is calculated according to the exponential premium principle which makes the stochastic control problem nonlinear. Both non-cheap and cheap reinsurance are investigated. The objective of the insurer is to determine the optimal reinsurance and dividend policy so as to maximize the expected discounted dividends until ruin. Bounded dividend rates and unbounded dividend rates are considered. In both cases, explicit expressions for the value function and the corresponding optimal strategies are obtained. Finally, a numerical example is presented, which shows the impacts of risk aversion of the reinsurance company on the optimal value function and the retention level for reinsurance.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">06/05/2013 Volumen 52 Número 3 - mayo 2013 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>