Búsqueda

Asymptotic investment behaviors under a jump-diffusion risk process

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170014430</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170517163551.0</controlfield>
    <controlfield tag="008">170511e20170301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170005421</subfield>
      <subfield code="a">Belkína, Tatiana</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Asymptotic investment behaviors under a jump-diffusion risk process</subfield>
      <subfield code="c">Tatíana Belkína and Shangzhen Luo</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We study an optimal investment control problem for an insurance company. The surplus process follows the Cramer-Lundberg process with perturbation of a Brownian motion. The company can invest its surplus into a risk-free asset and a Black-Scholes risky asset. The optimization objective is to minimize the probability of ruin. We show by new operators that the minimal ruin probability function is a classical solution to the corresponding HJB equation. Asymptotic behaviors of the optimal investment control policy and the minimal ruin probability function are studied for low surplus levels with a general claim size distribution. Some new asymptotic results for large surplus levels in the case with exponential claim distributions are obtained.We consider two cases of investment control: unconstrained investment and investment with a limited amount.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080616106</subfield>
      <subfield code="a">Cálculo de probabilidades</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20080653590</subfield>
      <subfield code="a">Luo, Shangshen</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/03/2017 Tomo 21 Número 1 - 2017 , p.36-62</subfield>
    </datafield>
  </record>
</collection>