Búsqueda

Mind your step

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200014072</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200427171556.0</controlfield>
    <controlfield tag="008">200427e20200101gbr|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20080084868</subfield>
      <subfield code="a">Smith, Andrew</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Mind your step</subfield>
      <subfield code="c">Andrew Smith</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The idea of a long-term interest rate is embedded in actuarial thought and practice. While market interest rates fluctuate, we think about long-run averages driven by economic fundamentals. Tasks ranging from budgeting for pension contributions to the ultimate forward rate in Solvency II require assessments of long-run average returns. Estimation of long-run returns involves a mix of judgment and, sometimes, intricate quantitative models. Bayesian statistics gives us a framework for combining these elements: the judgment corresponds to a prior distribution of parameters, while the forecast is based on a posterior parameter distribution given some data
</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20100065242</subfield>
      <subfield code="a">Teorema de Bayes</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578374</subfield>
      <subfield code="a">Tasas de interés</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564254</subfield>
      <subfield code="a">Solvencia II</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080562342</subfield>
      <subfield code="a">Estadísticas</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200013259</subfield>
      <subfield code="t">The Actuary : the magazine of the Institute & Faculty of Actuaries</subfield>
      <subfield code="d">London :  Redactive Publishing, 2019-</subfield>
      <subfield code="g">01/01/2020 Número 1 -  January/February 2020 , p. 28-30</subfield>
    </datafield>
  </record>
</collection>