Búsqueda

Reconsidering insurance discrimination and adverse selection in an era of data analytics

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Reconsidering insurance discrimination and adverse selection in an era of data analytics</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">che</placeTerm>
</place>
<dateIssued encoding="marc">2020</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">This article demonstrates how replacing age- and gender-based pricing variables with telematics data in auto insurance risk classification systems minimises insurance discrimination and increases cream skimming adverse selection. The study explains how incorporating telematics data into insurance pricing schemes reduces
pricing heterogeneity, consistent with the anti-discrimination objective of Aristotelian equality. It also describes how anti -discrimination prohibitions of age- and gender-based insurance pricing can result in regulatory adverse selection; traditional adverse selection, where asymmetric information favouring applicants can result in an overpopulation of high-risk drivers in risk pools; and cream skimming adverse selection, where asymmetric information favouring telematics-based insurers supports premium discounts that attract safer drivers, prompting an underpopulation of low-risk drivers among non-telematics insurers. The study explains how insurers minimise their vulnerability to cream skimming by quickly entering the pricing "arms race" with their own telematics-based products and how incorporating telematics data increases the efficiency of risk classification systems.</abstract>
<note type="statement of responsibility">David A. Cather</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080578848">
<topic>Análisis de datos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080582661">
<topic>Selección adversa</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603779">
<topic>Seguro de automóviles</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080613327">
<topic>Clasificación de riesgos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080556730">
<topic>Telemática</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Geneva papers on risk and insurance : issues and practice</title>
</titleInfo>
<originInfo>
<publisher>Geneva : The Geneva Association, 1976-</publisher>
</originInfo>
<identifier type="issn">1018-5895</identifier>
<identifier type="local">MAP20077100215</identifier>
<part>
<text>01/07/2020 Volumen 45 Número 3 - julio 2020 , p. 426-456</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">200722</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911211137.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20200024866</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>