A CP-based approach for mining sequential patterns with quantities
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20230009901</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20231214131725.0</controlfield>
<controlfield tag="008">230519e2023 esp|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">922.134</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20230004005</subfield>
<subfield code="a">Kemmar, Amina </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">A CP-based approach for mining sequential patterns with quantities</subfield>
<subfield code="c">Amina Kemmar, Chahira Touati, Yahia Lebbah</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper addresses the problem of mining sequential patterns (SPM) from data represented as a set of sequences. In this work, we are interested in sequences of items in which each item is associated with its quantity. To the best of our knowledge, existing approaches don't allow to handle this kind of sequences under constraints. In the other hand, several proposals show the efficiency of constraint programming (CP) to solve SPM problem dealing with several kind of constraints</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080563851</subfield>
<subfield code="a">Programación</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578848</subfield>
<subfield code="a">Análisis de datos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20230004012</subfield>
<subfield code="a">Touati, Chahira</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20230004029</subfield>
<subfield code="a">Lebbah, Yahia</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20200034445</subfield>
<subfield code="g">13/03/2023 Volumen 26 Número 71 - marzo 2023 , 12 p.</subfield>
<subfield code="x">1988-3064</subfield>
<subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
<subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
</datafield>
<datafield tag="856" ind1="0" ind2="0">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
</datafield>
</record>
</collection>