Person re-identification by siamese network
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Person re-identification by siamese network</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20230004043">
<namePart>Newlin Shebiah, R.</namePart>
<nameIdentifier>MAPA20230004043</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2023</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">This paper proposes the use of a Siamese network, which is a neural architecture that takes a pair of images or videos as input and predicts the similarity or dissimilarity of a person across two cameras. The output includes the prediction of similar and dissimilar persons along with their prediction scores. The proposed method was evaluated using iLIDS-VID and PRID 2011 datasets, and achieved recognition accuracy of 79.52% and 85.82%, respectively. These results demonstrate the effectiveness of the Siamese network for person re-identification tasks. Overall, this study contributes to the ongoing research on improving the accuracy of person re-identification across multiple cameras in surveillance videos</abstract>
<note type="statement of responsibility">Newlin Shebiah R...[et al.]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080563790">
<topic>Predicciones</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586331">
<topic>Métodos analíticos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080608712">
<topic>Sistemas de Vigilancia</topic>
</subject>
<classification authority="">922.134</classification>
<location>
<url displayLabel="MÁS INFORMACIÓN" usage="primary display">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>13/03/2023 Volumen 26 Número 71 - marzo 2023 , pp. 25-33</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">230519</recordCreationDate>
<recordChangeDate encoding="iso8601">20231214131729.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20230009932</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>