Búsqueda

Person re-identification by siamese network

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20230009932</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20231214131729.0</controlfield>
    <controlfield tag="008">230519e2023    esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.134</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Person re-identification by siamese network </subfield>
      <subfield code="c">Newlin Shebiah R...[et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper proposes the use of a Siamese network, which is a neural architecture that takes a pair of images or videos as input and predicts the similarity or dissimilarity of a person across two cameras. The output includes the prediction of similar and dissimilar persons along with their prediction scores. The proposed method was evaluated using iLIDS-VID and PRID 2011 datasets, and achieved recognition accuracy of 79.52% and 85.82%, respectively. These results demonstrate the effectiveness of the Siamese network for person re-identification tasks. Overall, this study contributes to the ongoing research on improving the accuracy of person re-identification across multiple cameras in surveillance videos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080563790</subfield>
      <subfield code="a">Predicciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586331</subfield>
      <subfield code="a">Métodos analíticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608712</subfield>
      <subfield code="a">Sistemas de Vigilancia</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20230004043</subfield>
      <subfield code="a">Newlin Shebiah, R.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">13/03/2023 Volumen 26 Número 71 - marzo 2023 , pp. 25-33</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1="0" ind2="0">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
    </datafield>
  </record>
</collection>