Búsqueda

A Robust Approach for Licence Plate Detection Using Deep Learning

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>A Robust Approach for Licence Plate Detection Using Deep Learning</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20240020866">
<namePart>Arora, Shefali</namePart>
<nameIdentifier>MAPA20240020866</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2024</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Intelligent transport systems must be developed due to the rising use of vehicles, particularly cars. In the field of computer vision, the identification of a vehicle's licence plate (LP) has been crucial. Various methods and algorithms have been used for the detection process. It becomes challenging to find similar photos, nevertheless, because the features of these plates change depending on colour, font, and language of characters. The research proposes a powerful deep learning framework based on feature extraction using convolutional neural networks and localization using canny-edge detection</abstract>
<note type="statement of responsibility">Shefali Arora [et al.]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080552916">
<topic>Vehículos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080643874">
<topic>Sistemas de transporte inteligentes</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555108">
<topic>Matrículas</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080557287">
<topic>Automóviles</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080611200">
<topic>Inteligencia artificial</topic>
</subject>
<classification authority="">922.131</classification>
<location>
<url displayLabel="electronic resource" usage="primary display">https://journal.iberamia.org/index.php/intartif/article/view/1107</url>
</location>
<relatedItem type="host">
<titleInfo>
<title>Revista Iberoamericana de Inteligencia Artificial</title>
</titleInfo>
<originInfo>
<publisher> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</publisher>
</originInfo>
<identifier type="issn">1988-3064</identifier>
<identifier type="local">MAP20200034445</identifier>
<part>
<text>19/06/2024 Volumen 27 Número 73 - junio 2024 , p. 129-141</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">240829</recordCreationDate>
<recordChangeDate encoding="iso8601">20240829122031.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20240013295</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>