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Abstract This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two
metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA
is an optimization algorithm that demonstrated promising results in solving many engineering problems. However,
the local search process of BA lacks efficient exploitation due to the random assignment of search agents inside the
neighborhoods, which weakens the algorithm’s accuracy and results in slow convergence especially when solving
higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes
the strength of the GOA to enhance the exploitation phase of the BA. To prove the effectiveness of the proposed
algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate
that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art
algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption.
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1 Introduction

Deployment optimization is a crucial issue that must be taken into consideration while designing an
efficient Wireless Sensor Network (WSN) [I]. Usually, a WSN comprises a number of sensors that are
dispersed in a geographical area [2]. Depends on the application, WSNs are deployed to achieve one or
more objectives. In most real-life applications, the main purpose of any WSN is data collection [3]. To
achieve this purpose, the sensors are required to sense all the events and report the maximum amount
of information about them to the end-user [4]. In other words, the positions of sensors must be chosen
carefully to maximize the area coverage. This makes the choice of the appropriate deployment strategy
very critical.

The deployment strategy is determined according to the application and the nature of the environment
[5]. When deploying the WSN in a friendly environment, the sensors are placed at accurate coordinates
relying on a predefined deterministic pattern [6]. However, in unreachable or risky environments, the
only available choice is random deployment, in which the sensors are scattered from the air over the
sensing area [7]. Clearly, when the sensors are deployed at random, they will not ensure the expected
performance, because there is a high chance that they end up placed above each other where their coverage
areas overlap [8]. This results in poor coverage preventing the WSN from achieving the desired goals. In
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the case of random deployment, most applications utilize mobile sensors, which gives them the ability to
improve the coverage by moving the sensors to new locations after the initial random scattering.

In the last few decades, a significant number of optimization algorithms are proposed to solve real-life
problems [9]. Metaheuristics as optimization algorithms have proven their efficiency in solving several
challenging problems [10]. However, many of them face difficulties during optimizing a number of problems
[11]. For instance, when the problem dimension is high (as in the case de WSN deployment) they fail in
producing high-quality solutions, which prevents them from achieving approximate solutions of the global
optimum. The Bees Algorithm (BA) [12] is a metaheuristic algorithm based on the behavior of honeybees
when seeking food, it has been successfully applied to project scheduling [I3], multiple disc clutch problem
[14], printed circuit board assembly minimization [I5], etc. However, BA has some disadvantages, mainly,
in the exploitation phase where the repetitive unguided random search performed by the foragers results
in slow convergence and low precision. Therefore, aiming at improving the exploitation of the BA, this
paper proposes a hybrid algorithm based on the Bees Algorithm (BA) and the Grasshopper Optimization
Algorithm (GOA) named as BAGOA. The GOA is a modern optimization algorithm inspired from the
swarming behavior of grasshoppers. The strength of GOA lies in its high level of exploitation guided by
the social interactions between all the agents in the swarm [16], which makes it ideal for hybridization
with the BA. In this paper, BAGOA is applied for optimizing the deployment of WSNs after an initial
random scattering of sensors. Our contribution is summarized as follows:

e We propose a hybrid algorithm called BAGOA that utilizes the GOA to strengthen the exploitation
of the BA.

e The BAGOA is applied to solve the problem of deployment optimization in WSNs.

e The performance of BAGOA is evaluated in terms of coverage, overlapping area, moving distance,
and energy consumption with different deployment settings.

e The BAGOA is compared with four state-of-the-art algorithms to demonstrate its effectiveness in
solving the deployment problem.

The rest of this paper is organized as follows: section 2 presents a literature review on sensor deployment
problem. Sections 3 and 4 present an overview on the BA and GOA algorithms. Section 5 describes the
proposed BAGOA algorithm. Section 6 presents the proposed deployment method. Simulation results
are presented in section 7. Finally, section 8 concludes the proposed work.

2 Literature Review

Similar to various problems related to the design of WSNs, deployment optimization got its share of
attention from the research community. In the literature, several studies have proposed plenty of solutions
that differ according to the optimization objective, the method, and the application where the WSN is
implemented. Regarding the method, metaheuristic algorithms are at the top of the solution list used
for deployment optimization. The reason for using metaheuristics lies in their advantages over exact
methods that require a lot of computational time to achieve a satisfactory solution.

An Improved Grey Wolf Optimizer (IGWO) for coverage optimization is presented in [17]. Firstly,
a nonlinear convergence factor is introduced to balance exploration and exploitation. Secondly, the
position updating equation of the GWO is improved by an enhanced weighting strategy. Finally, a
dynamic variation strategy is used to maintain the diversity of the population and avoids entrapment
in local solutions. The presented results show that IGWO delivers high-quality solutions in optimizing
the coverage. However, despite the improvements introduced to the GWO, IGWO still suffers from slow
evolution especially when the problem dimension is high. In [I8], a dynamic deployment method based on
the whale optimization metaheuristic for optimizing area coverage in WSNs is proposed. In this method,
a coverage interval is defined for fitness evaluation. That is, if a sensor node achieves a coverage value
in the predefined coverage interval, it is marked as an optimum sensor. Therefore, it will maintain its
current location in the following iterations. Although this mechanism makes the algorithm run fast and
requires less computational time to finish the optimization task, it leads to a premature convergence,
which prevents the algorithm from optimizing the coverage. The quick Artificial Bee Colony algorithm
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(qABC), which is a variant of the standard ABC algorithm was introduced in [19] to solve the problem
of deployment in WSNs. The authors considered both the Boolean and the probabilistic perception
models. The deployment optimization is taken as a minimization problem where the aim is to minimize
the uncovered area, thereby maximizing the coverage of the WSN. The qABC proved that it is effective
in optimizing the coverage, however, it needs more CPU to perform optimization. The work in [20]
proposes a Maximal Coverage Hybrid Search Algorithm (MCHSA) for maximizing area coverage using
multiple types of sensors. The MCHSA is constructed based on the framework of the Particle Swarm
Optimization (PSO) algorithm and the Hooke Jeeves method. The latter is applied to overcome the
stagnation problem of the PSO algorithm. That is, if the PSO search stagnates, the Hooke Jeeves
method is called to improve the fitness of the global best. MCHSA has the advantage of maximizing
the coverage using multiple types of sensors. However, it takes a longer computational time because of
the repetitive calling of the Hooke Jeeves method. In [21], a Biogeography Based Optimization (BBO)
algorithm is applied to the dynamic deployment of WSNs including both mobile and static sensors. The
algorithm starts by deploying a number of stationary and mobile sensors randomly in the sensing area.
Then, the migration and mutation operators of the BBO are used to move the mobile sensors to optimal
locations that optimize the network coverage. Experiments show that the BBO outputs good coverage
results. However, it does not consider the energy consumption of sensors during movement. In [22], Social
Spider Optimization (SSO) algorithm is implemented to solve the problem of deployment in WSNs. The
proposed deployment scheme takes advantage of the information exchange model using vibration utilized
by spiders to update the positions of sensors. According to the gender, each spider updates its position
either by attraction or by repulsion to optimize the network coverage. Although the SSO provides good
results in coverage maximization, it is not efficient when the number of sensors is high.

Aiming to enhance the search ability and the convergence of the Salp Swarm Algorithm (SSA), a
Weighted SSA is applied in [23] to tackle the sensor deployment problem in WSNs. The location update
equation of salps is improved by a new strategy called weighted distance position update. Experiments
show that WSSA provides good coverage values and performs well in minimizing energy consumption.
However, in their simulations, authors consider only a WSN with a small number of sensors in a deploy-
ment area of size 20m by 20m, which is not the case in real-world applications. The work in [24] proposes
a multi-objective algorithm based on the firefly algorithm for area coverage optimization. The authors
used the weight sum method to derive an objective function that maximizes coverage and minimizes the
energy consumed during sensor mobility. Despite the good performance of the proposed algorithm in
optimizing the energy, it is not efficient in maximizing coverage due to the lack of exploration phase.
Authors in [25] implemented the moth-flame optimization algorithm for target coverage in WSNs. The
proposed algorithm starts by deploying the sensors randomly, and then it utilizes the movement of moths
to cover a set of targets fixed in prior. This strategy improves the coverage of targets, but it does not
consider energy consumption during displacement.

3 Overview of the Bees Algorithm

The Bees Algorithm (BA) was proposed by Pham and Castellani in 2006 [12]. It mimics the behavior of
a swarm of honeybees when searching for food sources. In BA, the bees are classified into two categories;
scout bees and foragers. The scouts are responsible for discovering new food sources to collect nectar.
They start exploring randomly the surroundings of the hive in search for promising flower patches. When
a scout finds a good food source, it remembers the position information of the discovered food source
and returns to the hive. The scout shares the information about its findings with the foragers that are
waiting in the hive. The scout utilizes a special dance called the waggle dance to inform the foragers
about the discovered food source [26]. The highly-rated patches that contain rich and easily available
nectar (with higher fitness) attract the largest number of foragers. Finally, the scout bee goes back to
the flower patch followed by the recruited foragers to collect the nectar. When a forager bee comes back
to the hive, it may in turn waggle dance to direct other bees to the flower patch [27].

The artificial BA starts with ns scout bees being placed randomly in the search space. Then, the
position of each scout is evaluated using a fitness function. At each iteration, the nb scouts that discovered
the solutions with highest fitness perform the waggle dance to recruit a number of foragers. The ne top-
rated solutions recruit the largest number of foragers (nre) to the discovered flower patch. The remaining
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scout bees recruit (nrb < nre) foragers. This mechanism allows a larger number of bees to exploit the
most promising areas in the search space.

The foragers are placed randomly on solutions in the discovered flower patch. The flower patch
represents the visited food source and its vicinity expressed by the neighborhood size (ngh). If within the
neighborhood a forager lands on a solution better than the solution advertised by the scout, this forager
becomes the new scout and replaces the old scout in performing the waggle dance in the next iteration
[28]. The remaining scout bees (ns — nb) that have found poor food sources are assigned randomly
in the solution space scouting for new promising flower patches. The above steps are repeated until a
satisfactory solution is found or a maximum number of iterations is reached. The pseudo code of the BA
is presented in Figure

Pseudo-code of the BA

Randomly initialize the position of the scouts
While t < MaxlIter
. Evaluate the fitness of the population
. Sort the solutions based on their fitness
. Select nb solutions with the highest fitness for neighborhood search
. Recruit nre foragers for each of the ne elite sites selected among the nb best sites
. Recruit nrb foragers for each of the remaining best sites
. Randomly produce new solutions for the foragers in the neighborhood of the
selected sites
7. Check the feasibility of produced solutions
8. Select the fittest solution (bee) from each patch
9. Allocate the rest of the scouts randomly scouting for new solutions
10. Form the new population
11. Memorize the best solution achieved thus far
12. increment t by 1
End

AN LN A LN

Figure 1: Pseudo code of the BA algorithm.

4 Framework of GOA

Grasshoppers are voracious insects that eat almost all types of plants that come in their path. These small
insects are considered a nightmare for farmers due to the huge damage that they inflict on agricultural
crops. Usually, the grasshoppers live and eat individually in nature but most of the time millions of these
insects meet and form one of the largest swarm seen in nature. Similar to other insects, the grasshopper
life cycle is divided into two stages: larval and adulthood. The swarming of grasshoppers is seen in both
stages but with different behaviors. In the larval stage, the grasshoppers move slowly in the ground with
very small steps because they have no wings. In contrast, adult grasshoppers form a swarm in the air
where they move abruptly with larger steps [29] 30].

The Grasshopper Optimization Algorithm (GOA) is a modern nature-inspired algorithm presented by
Saremi et al., 2017 [31] for solving optimization problems. The characteristics of the two swarming behav-
iors are the main motivation of the GOA. The movement of grasshoppers in a swarm is mathematically
formulated as follows [31]:

X;i=85+G;+ A (1)

Where X; denotes the position of i-th grasshopper, S; is the social interaction, G; is the gravity force,
and A; represents the wind advection.

Among the three components in equation [I], the social interaction is the most important factor in the
movement of grasshoppers, which can be expressed as follows:

N —
Si = ZS(dU)dU (2)

j=1
i
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dij = |xj - xz| (3)
dij = (w0 — ;) /di (4)

Where d;; is the distance between the i-th and the j-th grasshopper, g; is a unit vector from the i-th
to the j-th grasshopper, N is the number of grasshoppers, and finally the s() function represents the
strength of social forces:

s(ry=fet —e (5)
Where f and [ represent the intensity of attraction and the attractive length scale, respectively.

Based on the distance, the space between two grasshoppers is divided into three zones: repulsion
zone, attraction zone, and comfort zone (where there is neither attraction nor repulsion). Each grasshop-
per updates its position either by attraction or repulsion taking into consideration the positions of all
grasshoppers in a swarm.

The gravity force and wind advection of the i-th grasshopper are calculated according to the following
equations:

G = 96, (6)

Where g and w are constants, €, and e, represent the unity vector towards the center of the earth and
the direction of the wind, respectively.

The mathematical model proposed so far cannot be utilized directly to perform optimization because
the swarm does not converge to a particular point, a modified version of equation [1}is proposed in [31]
to solve optimization problems as follows:

N ubg — b T —
Xi=c §c%s(|x?—xf|)#jl +Ty (8)
=
Where ubg and lb; denote the upper and the lower bounds of the d-th dimension, Ty represents the value
of the d-th dimension in the best solution. The outer c is a decreasing coefficient that balance exploration
and exploitation around the best solution, the inner c is utilized to shrink the comfort zone, repulsion
zone, and attraction zone with respect to the number of iterations. The parameter ¢ is computed by the
following equation:
Cmaxz — Cmin
C = Cmaz — 1 17 (9)
Where [ is the current iteration and L is the maximum number of iterations. Generally, the values of
Cmaz and Cpin are taken as 1 and 0.00001, respectively.
In the modified equation, the gravity force has not been considered and the wind direction has been
assumed towards the target Ty. The pseudo code of the GOA algorithm is illustrated in Figure

5 Hybrid Bees Algorithm with Grasshopper Optimization Al-
gorithm (BAGOA)

Randomness is an important characteristic employed by metaheuristics mainly in the exploration phase
where the search agents are subject to abrupt movements to explore different areas of the search space.
In addition, it is also utilized to avoid entrapment in local solutions during optimization. However, in the
exploitation phase, the search should be directed and concentrated near the best solutions to improve the
solution quality and increase the chances of obtaining a good approximation of the global optimum [32].

The foremost matter of concern is that the BA relies on randomness in all the phases of optimiza-
tion. When exploring the search space, the scouts that have found low-quality solutions are distributed
uniformly at random in the search space scouting for new promising solutions. Similar to exploration, in
the exploitation phase, the foragers in the BA are placed on solutions that are also generated randomly
in the neighborhood of the selected solutions. Essentially, both exploration and exploitation are mainly



Inteligencia Artificial 67(2021) 23

Pseudo-code of GOA
Randomly initialize the position of the swarm of grasshoppers
Initialize ¢y gy, Cmin and maximum number of iterations
Evaluate the positions of grasshoppers
T = the best grasshopper
While (t < Maximum number of iterations ) do
Update ¢ using Equation (9)
For each search agent
Normalize the distances between grasshoppers in [1, 4]
Update the position of the current search agent by Equation (8)
Bring the current search agent back if it goes outside the
bounderies
End for
Update T if there is a better solution
increment t by 1
End while

Figure 2: Pseudo code of the GOA algorithm.

performed using random mutations in current solutions. This random behavior is not efficient, especially
during exploitation due to its influence on the convergence speed of the algorithm. The random and
undirected search leads to slow convergence because the search agents were not allowed to exploit the
neighborhood efficiently. Moreover, the repetitive random local search performed in the neighborhoods
relatively weakens the algorithm’s accuracy, stability, and success rate.

To overcome the aforementioned shortcomings, the BA is hybridized with GOA to enhance the ex-
ploitative strength of the algorithm. The purpose of proposing the hybrid algorithm is to minimize the
effect of randomness in BA during exploitation to improve the algorithm’s search capability and makes
the search oriented toward the best solution in the neighborhood. As aforementioned, the GOA utilizes
the information of all search agents to define the next position of each one of them. Therefore, instead
of randomly searching around the solution advertised by the scout, the BAGOA updates the position
of each forager based on its current position, the position of the target (best solution in the neighbor-
hood), and the position of all other foragers in the corresponding neighborhood. Initially, the foragers
are distributed at random in the neighborhoods, then the BAGOA selects the best experienced forager
bee in each neighborhood as the target and adjusts the positions of the other foragers based on the social
knowledge according to equation . This mechanism allows the foragers to exploit the neighborhood
efficiently. Moreover, the directed search toward the best solution in each neighborhood increases the
chances of achieving a good approximation of the global best, which in return leads toward superior
results in terms of convergence and accuracy.

It should be noted that the parameter ¢ in equation reduces the movements of foragers around the
best solution in the neighborhood, which is essential in exploitation. The foragers will converge towards
the target as much as possible in the last steps of optimization seeking a more accurate target. The
pseudo code of the proposed BAGOA algorithm is illustrated in Figure [3

6 BAGOA for deployment optimization

6.1 Coverage Model Description

For coverage calculation, we utilize the Boolean perception model to define the detection capability of a
sensor. In this model, the sensing area where the sensors are deployed is regarded as a grid of dimension
M x N. To optimize the coverage, the sensors are supposed to cover the maximum number of points in
the grid. The coverage of each point in the grid is judged based on the Euclidean distance separating it
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Pseudo-code of the BAGOA

Randomly initialize the position of the scouts
Initialize gy, Cmin
While t < MaxIter
. Evaluate the fitness of the population
. Sort the solutions based on their fitness
. Update c using Equation (9)
. Select nb solutions with the highest fitness for neighborhood search
. Recruit nre foragers for each of the ne elite sites selected among the nb best sites
. Recruit nrb foragers for each of the remaining best sites
. Randomly produce new solutions for the foragers in the neighborhood of the
selected sites
8. Calculate the distances between foragers and normalize them in [1, 4]
9. Update the position of the foragers by Equation (8)
10. Check the feasibility of produced solutions
11. Select the fittest solution (bee) from each patch
12. Allocate the rest of the scouts randomly scouting for new solutions
13. Form the new population
14. Memorize the best solution achieved thus far
15. increment t by 1
End

NN AW

Figure 3: Pseudo code of the proposed BAGOA algorithm.

from the set of sensors. For covering a grid point T located at (z,y:) by a sensor s; located at (x;,y;)
in 2D-space, the distance separating them should be less than or equal to the perceptual radius of the
sensor s; as expressed in equation [33].

L oaif V(wi—2)?+ (yi —w)2 <R
Pla:. s — ) 4 4 S 1
(xzayuxt)yt) {0’ otherwise ( O)
Where R, is the perceptual radius of sensor s;.

Based on equation , the coverage of the grid point T' by all the sensors in the network can be
determined according to the following equation [34]:

PC(S71'tayt) :17H(17P(xiayiaxt7yt)) (11)
i=1

Where S is the set of sensors and sn is the total number of sensors.

At last, the coverage rate of all the grid points is computed using equation [34].

Z;]E\{Zl Zg:l PC(S7 Lt, yt)

CR= M x N

(12)

6.2 Solution Representation

In BAGOA, the position of each food source represents a feasible solution for the problem being optimized.
Assume we have S = {s1, $2,..., 8, S, } wireless sensors to be deployed in the area of interest. Each
solution X, (i = 1,...,m) is a vector X; = (1, y1, T2, Y2, - ., Tn, Yn) that contains the position coordinates
of all the sensors. Where z; and y; represent the coordinates of the i-th sensor in 2D space.

6.3 Initialization

The BAGOA starts by employing a number of scout bees randomly in the search space looking for food
sources. As aforementioned, the position of each food source can be identified as a vector of coordinates.
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Therefore, given a deployment area of size M x N, the initial coordinates are chosen randomly inside the
bounds of the deployment area such that 0 <z < M and 0 <y < N.

6.4 Deployment Optimization

The algorithm starts by randomly deploying S sensors for each solution (food source). Then, each scout
bee is assigned to one solution, which means that the number of generated solutions is equal to the
number of scouts. After that, the solutions are evaluated in terms of coverage to determine the best and
the elite bees. In the next step, the selected scout bees recruit a number of foragers for neighborhood
search. The recruited foragers are placed on random solutions in the vicinity of the solution advertised
by the scout. At this stage, the best forager in each neighborhood is selected as a target and the positions
of the foragers in the corresponding neighborhood are updated according to the position update equation
of GOA (equation ) If one of the foragers finds a better network coverage than the scout, that forager
bee becomes the new scout and participates in the waggle dance in the next generation. The global
search of the BAGOA is the same as BA where the bees that ranked last are assigned randomly in the
solution space scouting for new promising solutions. The above steps are repeated until a coverage value
above a predefined threshold is met or a maximum number of iterations is reached. The flow chart of the
BAGOA deployment algorithm is illustrated in Figure [d] The dotted rectangle shows the improvement
introduced in this paper.

| Random initialization of ns scout bees | | Selection |
_.l Fitness evaluation | Randomly initialize nre Randomly initialize nrb
1 foragers for each Elite foragers for each Best
- Site Site
| Sort the population | === g Ry J===== 5
1| Determine the target in Determine the targetin | !
| Update the value of ¢ using Equation (9) | 1 each patch each patch :
! : i ! I
| Local search | Update the position of each Update the position of each | 1
l | forager using Equation (8) forager using Equation (8) | I
| Global search L i + —————————————— 1 ————— -!
l Select the fittest bee in Select the fittest bee in
| Form the new population each patch each patch
No
Assign the (ns nb) remaining bees to
Yes random search

| Solution |

Figure 4: Flow chart of the proposed BAGOA algorithm.

7 Experimental Studies

This section is designed to prove the superiority and the effectiveness of the proposed hybrid algorithm in
solving the problem of deployment in WSNs. Three groups of experiments are conducted with different
area sizes and sensing range values. In the first experiment, the proposed algorithm is compared with
two related work algorithms namely BA and IGWO in terms of search accuracy and convergence. In the
second experiment, the deployment performance of the BAGOA in a large sensing area is assessed with a
different number of mobile sensors. The obtained results are compared with those of the qABC algorithm.
The last experiment simulates a wireless sensor network composed of both stationary and mobile sensors.
The BBO is chosen as a comparison algorithm to evaluate the results of the hybrid algorithm presented
in this paper.
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7.1 Parameter Settings

Table [[] illustrates the information about the comparison algorithms used in the set of experiments. The
parameter settings of the algorithms are the same as those in the corresponding publications. The size of
the population of all the comparison algorithms is set to 30. Each algorithm is executed 10 times, and the
best and average results are analyzed. In all the simulations, the initial positions of mobile sensors are
generated randomly inside the sensing area. The parameter values of the BAGOA used for comparison
with related works are presented in Table 2} It should be noted that the algorithms were implemented
using Matlab R2017a software.

Table 1: The comparison algorithms.

Algorithm | Reference | Sensor type Coverage type
BA 135) Mobile Area coverage
IGWO [17] Mobile Area coverage
qABC [19] Mobile Area coverage
BBO 121 Static and Mobile | Area coverage

Table 2: Parameter settings of the BAGOA.
Parameter Value
Scout bees (ns)
Best sites (nb)
Elite sites (ne)
Recruited bees of elite (nre)
Recruited bees of best (nrb)
Neighbourhood size (ngh) 40

N~ W ot

7.2 Evaluation Metrics
7.2.1 The overlapping area

Given the fact that the sensors are homogeneous, two sensors are said to be overlapped if the distance
separating them is less than twice the sensing radius. The overlapping area between the two sensors can
be expressed as the sum of common grid points covered by them [36]. Therefore, the overlapping area
between the set of sensors can be computed as follows [37]:

M N
Overlappareqa = Z Z overlapp(S, x,y) (13)

z=1y=1
Where

L,

overlapp(S, z,y) — {O if the grid point T(x,y) is covered by at least two sensors from S
)

otherwise (14)

7.2.2 Energy consumption

Controlling energy consumption during deployment has a significant influence on the life span of the
WSN [38]. After optimizing the coverage, the sensors are required to move from their initial random
positions to their final positions optimized by the algorithms. Because sensors are constrained in terms of
energy, the movements of sensors should be reduced as much as possible in order to conserve energy. In
the present work, the total energy consumed by the sensing devices during movement can be computed
as follows [39]:

F=wx dall (15)
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Where w is the amount of energy depleted per meter of movement, d,;; represents the average moving
distance in the network, and it is expressed as follows [39]:

oot dist(initial;, final;)
sn

dan =

(16)

Where sn is the number of sensors, dist is a function that calculates the Euclidean distance between
the initial and final positions of sensors.

7.3 Experiments and results

In the first experiment, the BAGOA is simulated in an area of size 50 m x 50 m, the perceptual radius
of the sensors is the same and fixed to 5 m, and the maximum number of iterations is 200. The
collected quantitative results are compared with those obtained from the simulations of the standard
Bees Algorithm (BA) and the Improved Grey Wolf Optimizer (IGWO). The comparison results are
illustrated in Table |3] Please note that the values written in bold represent the best results.

Table 3: Deployment results comparison between the algorithms in an area of size 50 m by 50 m.

Number | BAGOA BA IGWO
of sensors | Best(%) | Mean(%) | Std Best(%) | Mean(%) | Std Best(%) | Mean(%) | Std
30 87.56 86.45 0.680 | 84.56 83.90 0.385 | 86.52 84.91 0.861
40 97.52 96.74 0.420 | 94.88 94.30 0.426 | 95.84 94.29 1.089
50 99.72 99.39 0.190 | 99 98.38 0.343 | 98.88 97.94 0.756

Table [3|shows that BAGOA provides superior deployment results compared with the other algorithms
in all the test cases. In particular, BAGOA was the most efficient algorithm in optimizing the coverage
where it achieves 87.56% and 97.52% when deploying 30 and 40 nodes respectively. Furthermore, it
covers almost the entire sensing area effectively where it reaches 99.72% of coverage with 50 deployed
sensor nodes higher than those obtained using BA and the IGWO by 0.72% and 0.84%, respectively.
Moreover, after BAGOA optimizes the deployment, the sensors are evenly distributed as illustrated in
Figure [5| covering the sensing area effectively.

When comparing the coverage mean values of the three algorithms, Table [3| shows that the BAGOA
provides significantly better results in all the test cases. For instance, in comparison with the mean
values produced by IGWO, the values provided by BAGOA are improved up to 1.54%, 2.45%, and 1.45%
when deploying 30, 40, and 50 sensors respectively. The standard deviation (Std) values in Table [3| also
prove the superiority of the proposed algorithm where it achieves the smallest standard deviations in the
majority of the test cases. This indicates that most of the time the BAGOA can optimize the network
coverage and obtains a good approximation of the full coverage.

In further analysis, the convergence curves of the three algorithms are shown in Figure [f] It should
be noted that the algorithms are executed with the same experimental parameters and the average of
the solutions obtained in some iterations over 10 runs is compared for clarity. As may be seen in this
figure, the BAGOA significantly outperforms the BA and the IGWO in optimizing the coverage where it
reaches 99.39% on average. The IGWO is ranked last, where it provides a coverage value lower than that
optimized using BA by 0.44%. In direct comparison with BA, the BAGOA tends to be accelerated faster as
iteration increases. The reason why BAGOA converges fast is that the foragers search the neighborhood
efficiently guided by the social interaction and oriented toward the best solution in the neighborhood
instead of the repetitive blind search performed by the standard BA. In addition, we observe from the
first iterations that the BAGOA coverage curve is always above the curves of the other competitors.
This indicates that BAGOA has the fastest convergence speed, followed by the BA algorithm with a
big difference from IGWO, which has the slowest speed. Therefore, Figure [6] verifies the validity of the
improvement proposed in this paper in enhancing the convergence and the precision of the standard BA.
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Figure 5: (a) final deployment solutions derived by BAGOA: (a) for 30 sensors, (b) for 40 sensors, and
(c) for 50 sensors.
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Figure 6: Convergence curves of BA; IGWO, and BAGOA.

In addition to the above, the BAGOA delivers significantly better results in terms of minimizing the
average moving distance and energy consumption outperforming both BA and the IGWO. As can be
seen from Figures [7] and [§] IGWO results in fast depletion of the energy of sensors where it fails to
minimize the moving distance during deployment. On the other hand, both BAGOA and BA achieved
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better results than IGWO with varying numbers of nodes. However, BAGOA was able to minimize the
moving distance of sensors where it increases the energy saving up to 3.20%, 3.72%, and 3.65% compared
with BA when deploying 30, 40, and 50 sensors respectively. The main reason is that the movement
of sensors is bounded by the neighborhood size. Unlike IGWO that move the sensors to any locations
inside the entire sensing area, BAGOA avoids long distance movements by reducing the boundaries of
the movement area. Therefore, each sensor will move only in the area marked by the neighborhood size.
Furthermore, the shrinking of the comfort zone, repulsion zone, and attraction zone gradually reduces
the movement of sensors. Consequently, this will decrease the moving distance, which in return leads
to reducing the energy consumed during the displacement of sensors to their final positions. Besides,
the results show that the energy consumption of BAGOA is almost stable even with the increase in the
number of nodes.
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Figure 7: Average moving distance comparison between BA, IGWO, and BAGOA.

80

70

60
50
= BAGOA

30 = BA
20 = IGWO
10

0

30 40 50

NUMBER OF SENSORS

ENERGY CONSUMPTION
sy
S

Figure 8: Energy consumption comparison between BA, IGWO, and BAGOA.

The second experiment was designed to observe the performance of the BAGOA in optimizing the
WSN coverage when the deployment is scaled over a large geographical region. For this purpose, an
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area of size 100 m x 100 m is used with a perceptual radius equals to 7 m, and a number of sensors
varying between 20 and 100. In this experiment, the qABC is utilized as a comparison algorithm with
the BAGOA. Each algorithm was executed 10 times with a maximum number of iterations equals to 200.
The best and average results are reported in Table

Table 4: Deployment results comparison between two algorithms in an area of size 100m by 100m.

Number | BAGOA qABC

of sensors Best(%) | Mean(%) | Std Ave Sr\;zrlapp Best(%) | Mean(%) | Std Ave ;)r\;(;rlapp
20 31.27 31.26 0.014 | O 31.20 31.17 0.016 | 1.0000e-03

40 62 61.74 0.134 | 0,272 60.77 60.18 0.389 | 0.9780

60 84.19 83.68 0.340 | 6,171 82.26 80.48 1.072 | 8.2020

80 95.47 94.67 0.449 | 21,542 93.43 91.72 0.831 | 22.8320

100 99.08 98.75 0.206 | 41,407 97.77 97.12 0.461 | 40.3460

The results of Table [] show that BAGOA again performs better in optimizing the coverage, mean
(average coverage), and standard deviation values, also it minimizes the average overlapping area of
the network. To be more specific, the BAGOA provides 31.27%, 62%, 84.19%, and 95.47% of coverage
when deploying 20, 40, 60, and 80 sensors respectively. In addition, it achieves the best approximation
of the full coverage with 100 sensors, where it reaches 99.08% with a difference of 1.31% from qABC.
The results indicate that the proposed algorithm maintains the best deployment performance for a large
area of size 100 m x 100 m. Besides, by observing Table ] the BAGOA has a better mean and standard
deviation values compared with the qABC in all the test cases, which confirms its stability and reliability.
Moreover, it contributes to minimizing the overlapping area in the majority of the test cases except when
the number of sensors is 100. It is well known that maximizing the coverage results in a decrease in the
overlapping area. However, when the network is crowded and there are too many nodes deployed close to
each other, the possibility for sensors to be overlapped will increase. For instance, when a coverage hole
is between a set of sensors, the BAGOA requires them to overlap in order to eliminate that coverage hole.
Therefore, maximizing coverage when a large number of sensors are deployed (100 sensors in our case)
triggers a supplementary cost by increasing the overlapping area. Generally, as can be seen from Table
[ the BAGOA performs better in maximizing the coverage and reducing the overlapping area between
sensors to a minimum value.

In the last experiment, we analyze the performance of the BAGOA in enhancing the coverage of a
mixed wireless sensor network. For this purpose, a set of simulations are conducted with a WSN containing
both mobile and stationary sensors. In the simulations, a total of 100 sensors with 80 stationary sensors
and 20 mobile sensors are deployed in an area of size 100 m x 100 m, the perceptual radius is set to 7 m,
and the number of iterations is 100. The BBO algorithm used in [21] to solve this problem is chosen to
make a comparison with BAGOA. At first, the stationary sensors are deployed in the sensing area, and
then the algorithms will attempt to optimize the network coverage by changing the positions of mobile
sensors. To obtain a fair comparison, it should be noted that the algorithms start with the same initial
positions of stationary sensors. The algorithms were simulated for 10 runs, and the collected results are
presented in Table

Table 5: Deployment results comparison between two algorithms in the case of mobile and static sensors.

Algorithms In1t1’al coverage of Best(%) | Mean(%) | Std
stationary sensors

BAGOA 69.01 92.47 91.86 0.321

BBO 69.01 90.06 88.86 0.599

It can be seen from Table [5] that BAGOA offers excellent coverage results throughout the experiment.
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More specifically, the BAGOA was successful in optimizing the coverage where it reaches 92.47%, with
an increase of 23.46%. On the other hand, the BBO algorithm has an increase of 21.05%, which is
2.41% lower than BAGOA. Besides, the BAGOA outperforms the BBO in terms of average results with
a difference of 3%. According to the collected results, the BAGOA is superior to the other competitor
in optimizing the coverage in the case of static and mobile sensors. Moreover, the BAGOA provides a
significant reduction in standard deviation value, which proves that it maintains a stable performance
during the simulations.

Figure [9] shows the best deployment solutions of the two algorithms starting with the same initial
deployment of stationary sensors. As can be seen from Figure Ok, the BAGOA was successful in max-
imizing the initial coverage of the network by properly choosing a set of optimal positions for the 20
mobile sensors.

(b) ©

Figure 9: (a) Initial deployment of stationary sensors, (b) Final sensor distribution of BBO, and (c) Final
sensor distribution of BAGOA.

Regarding energy, as can be observed from Figures [I0] and [II] BAGOA once again proves its effi-
ciency in minimizing the amount of energy consumed during the displacement of sensors. The energy
consumed by the sensors using BAGOA is less than half the energy required to move the sensors to their
final positions using BBO. BAGOA offers a significant contribution to saving energy by deploying the
mobile sensors in a way that optimizes the overall coverage and minimizes energy consumption, thereby,
prolonging the network lifetime. The superior results are due to the shrinking of movement boundaries
performed by the BAGOA that contributes to decreasing the moving distance, where it does not allow
movement steps greater than the neighborhood size. Moreover, the tendency toward the best agent in
the neighborhood decreases the motion rate of sensors, which leads to avoiding the fast depletion of their
energy and allows the sensors to remain functional for a longer time.
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Figure 10: Average moving distance comparison between BBO and BAGOA.
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Figure 11: Energy consumption comparison between BBO and BAGOA.

8 Conclusion

In this paper, a hybrid algorithm based on the Bees Algorithm and Grasshopper Optimization Algorithm
named BAGOA is proposed to solve the problem of deployment optimization in WSNs. The proposed
BAGOA algorithm utilizes the strength of the GOA to enhance the exploitative capability of the BA
by searching the neighborhood more efficiently instead of the blind random search of the basic BA. By
hybridizing the two algorithms, the BAGOA achieves a significant acceleration in the convergence and
an increase in the search accuracy. As an outcome, it led to superior results when solving the problem
of deployment. The conducted comparative studies proved the efficiency of the BAGOA in optimizing
the deployment of WSNs compared with other state-of-the-art algorithms where it provides excellent
coverage results throughout the experiments. Furthermore, BAGOA is an energy-efficient algorithm,
which contributes to maximizing the network lifetime by minimizing the amount of energy consumed by
the sensors to reach their optimal positions. Besides, the superior results achieved by BAGOA in the
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three experiments show that it has excellent adaptability in solving different deployment problems under
different experimental settings.

For future works, the BAGOA can be used to optimize several objectives such as cost and connectivity
with multiple types of sensors.
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