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Abstract
Establishing a standard formula (SF) for the regulation of European insurance com-
panies is a Herculean task. It has to acknowledge very different business models and 
national peculiarities. In addition, regulatory authorities—as a stakeholder on their 
own—have a number of supervisory objectives the SF should incentivize. With the 
intervention of the SF in economic activities, the principle of equal treatment must 
be maintained. The large circle of users makes its procedural simplicity indispensa-
ble to ensure that it is applied and implemented in a proportionate manner. Above 
all, the SF should be risk-sensitive. Compared to Solvency I, the SF of Solvency II 
is considered a significant improvement, as many of the aforementioned desiderata 
have been much better realized. The following analysis and survey of model-theo-
retical aspects of the SF shows that these improvements could be achieved above all 
with regard to epistemic uncertainties. The stochastic model underneath the SF is 
still subject to considerable uncertainties; so that the probability functional of the SF 
is exposed to significant model risk. As part of the Own Risk and Solvency Assess-
ment (ORSA), insurance companies must prove the adequacy of the SF for their 
company. The vague prior knowledge represented by the stochastic component of 
the SF is not sufficient for an SF intrinsic validation of the aleatoric component.

1  Introduction

The development of the new supervisory regime for insurance companies—Sol-
vency II—took almost a decade. The further development of the International Insur-
ance Capital Standards is currently under way, see, e.g., [14]. Moreover, EIOPA 
launched a review of the standard formula (SF) until 2020, see [6]. The practical, 
but also regulatory theoretical significance of the SF, which implements the Pillar I 
requirements of Solvency II, can hardly be overestimated, as the amount of solvency 
capital required (SCR: solvency capital requirement) restricts the business volume 
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of insurance companies and thus reduces the most significant production factor: 
own funds. On the other hand, the SCR serves supervisory authorities as a means 
of achieving their supervisory objectives (e.g. reduction of systemic risks, consumer 
protection, see, e.g., BaFin [6]). The majority of insurance companies in Germany 
(about 90%) use the SF to determine their SCR. Only a minority of about 30 insur-
ance companies make use of their legal right to develop an internal model as an 
alternative. However, the market share of insurance companies with internal models 
in Germany is approximately 50%.

A well written and brief summary of the technique of the standard procedures 
(more precisely, concerning the basic SCR in QIS 5) is provided by Chech [13]. 
Sandström’s compendium, see [42], offers encyclopaedic completeness. Interested 
readers can find synoptic comparisons of the regulatory components of Solvency II 
with those of the banking supervisory regulations (Basel III) in Gatzert and Wesker 
[24] and Laas and Siegel [30]. Liebwein gives an overview of the application con-
text of internal models under Solvency II in [31]. Important comments from a prac-
titioner’s perspective are given by Dacorogna et al. [15].

The SF has many structural parallels to internal models (IM). In particular, it 
defines a forecast model whose assumptions, characteristics, and properties can be 
investigated from both an absolute and a relative perspective—in the light of eco-
nomic, risk management, supervisory, and stochastic criteria. An absolute perspec-
tive is a purely SF immanent evaluation of the SF, i.e. without the use of additional 
(model) references that go beyond the context reference. A relative perspective 
compares properties of the SF with alternative models. The following investigations 
focus on the analysis of the formal, i.e. mathematical properties of the standard for-
mula from an absolute perspective.

The basic insights on quantitative risk management, starting with Morgan’s pub-
lication of RiskMetrics [36]—the inauguration of value-at-risk (VaR) as the most 
important risk measure in practice—and the seminal work of Artzner et al. [1] on 
coherent risk measures, Föllmer and Schied [20] on convex risk measures, and the 
work of Heyde et  al. [27] on statistical and robust risk statistics have dominated 
theoretical and practical discussions on risk management issues, see, e.g., Embre-
chts et al. [19]. Heyde et al. [27] in particular deal with both formal and epistemic 
aspects of risk measures.

RiskMetrics, see [36], is based—in the spirit of the Markowitz approach—on an 
objective model framework, in which the risk of a portfolio X, quantified as �(X) , is 
measured by a statistical functional

where the portfolio X is modelled by a random vector with distribution function FX , 
i.e. X ∼ FX . This is explained in more detail in Sect. 3.2. Such an objective model 
approach implies far-reaching consequences for regulatory acceptance, validation, 
and above all for the application in a company.

Insurance markets constitute an important example of incomplete markets. Most 
insurance products cannot be fully replicated through trading strategies, which sug-
gests using utility theory, as it allows decision-specific aspects to be incorporated into 

(1)�(X) = T(FX),
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decisions under uncertainty. Denuit et al. [16, p. 88] and Wang et al. [47] represent a 
decision problem on the model side by a rank-dependent expected utility of the uncer-
tain cash flow Y

where g
(
FY (◦)

)
 denotes the distorted survival function of Y and u(◦) denotes the 

utility function of the insurance company. Both g(◦) and u(◦) express decision-spe-
cific aspects, such as risk appetite or perception of probabilities. These subjective 
components go beyond the inevitable subjective elements of an objective model (1).

A utility theoretical superstructure seems to be most flexible in order to provide 
interfaces with the scientific theoretical (e.g. Mainzer [33]), economic (e.g. Straub and 
Welpe [44]), and regulatory standard setting (e.g. Barnett and O’Hagan [7]) literature 
as well as the basic literature on risk management (e.g. Jaeger et al. [28], Aven [3]).

The use of the standard methods implicitly requires not only a logical understand-
ing of them, but supervision also requires this understanding from the Board of Man-
agement by law, see the contribution of Stahl, Fahr et  al. [43], in the commentary 
of the VAG (German Insurance law). The company’s own risk and solvency assess-
ment (ORSA, see, e.g., the book by Gorge [25]), which is required by the supervisory 
authorities, forms the linchpin of proof of this understanding. In this context, EIOPA 
published a key document, see [18], summarizing the most important assumptions 
underlying the SF. The aim of that document is to enable insurance companies using 
the SF to provide evidence of the adequacy of the SF within the framework of ORSA.

In addition to the work on formal aspects of risk models already cited, more fun-
damental work on the theory of the concept of risk is also tacitly included. We have 
already mentioned the works of Aven [4], Jaeger et al. [28], and Douady et al. [45]. In 
particular, we follow these authors in their differentiation of epistemic and aleatoric 
components in the modelling of uncertainty.

Following this introduction, Sect. 2 presents the progress made in determining the 
SCR with the introduction of Solvency II in comparison with Solvency I, as well as 
key structural elements of the SF. The latter show in particular that the SF, given the 
information in t = 0 , is deterministic. Based on the decomposition of uncertainty into 
an epistemic and an aleatoric component, the formal properties of the SF are analysed 
in relation to given axioms of risk and capital functions. Section 3.2 analyses the sto-
chastic model underneath the SF. The main finding is that the SF defines incoherent, 
subjective probabilities. Furthermore, the SF is analysed with regard to its (epistemi-
cally interpreted) axioms. It is observed that the SF is neither a coherent nor a transla-
tion invariant capital functional. Section 4 summarizes the main results.

2 � Essentials of the SF

Compared to the structure of Pillar I under Solvency I (i.e. the SCR calculation), the 
SF under Solvency II has a number of significant improvements, see Gorge [25] for 
details. An example is the determination of the SCR under Solvency I for non-life 

(2)ℍu
g
(Y) = −∫

∞

−∞

u(x) dg
(
FY (x)

)
,
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insurance policies on the basis of premium (16%) alone; risks from capital invest-
ments were ignored.

Compared to this rule-based approach, Solvency II provides a number of struc-
tural improvements: 

1.	 Valuation: An insurance company is valued using the newly introduced solvency 
balance sheet. The change in this balance sheet ( △BoF ∶= BoF1 − BoF0 ; acro-
nym of basic own funds) over one year constitutes the variable to be controlled 
by the SF under Solvency II.

2.	 Risk profile: The computation of the solvency capital requirement uses epistemic 
knowledge of the risk structure of the insurance industry, e.g. about the sources 
of risk like spreads, longevity, and duration. Furthermore, organizational aspects 
as lines of business, geographic aspects, etc. are considered. This is manifested, 
among others, in the hierarchical tree of risk categories, see Fig. 1. The SF thus 
permits the creation of a risk profile.

3.	 Probabilistic statements: The epistemically well-founded determination of the 
SCR undergoes an additional aleatoric interpretation as a risk measure: 

(3)
Pr
(
−△BoF ∈ [SCR,∞)

)
= 1 − �,

Pr
(
BoF1 ∈ (−∞,BoF0 − SCR]

)
= 1 − �,

Fig. 1   The above illustration is taken from the EIOPA document on the basics of the SF, see [18, p. 6]. 
The SCR of an insurance company is the sum of the basic SCR (BSCR), the OpRisk SCR (Op), and the 
deduction item for adjustments (Adj)
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 with the regulatory survival probability of � = 99.5% and 
−ΔBoF = BoF0 − BoF1. This means that BoF1 is interpreted as a random vari-
able with continuous distribution function and the SCR as a value-at-risk (VaR) 
with a 1-year time horizon. Vanduffel et al. [17] discuss the advantages of VaR 
from a regulatory perspective.

4.	 Aggregation of building blocks: The components of the basic SCR (as in Fig. 1) 
are aggregated using a fixed correlation matrix. The category of intangible assets 
(Intang) was no longer considered in the final version of Solvency II. The vec-
tor � = (L1,… , L5) denotes the loss variables associated with the five risk cat-
egories (market risk, ..., non-life risk). In the following, � and its individual 
components Li are understood as random variables. Since with (3) losses that 
are greater than the SCR can only occur for a portfolio X with a probability 
of 1 − � , (3) can be represented as follows: Pr

(
L ∈ [SCR,∞)

)
= 1 − � , where 

−ΔBoF = L ∶=
∑5

i=1
Li.

5.	 Mitigation procedures: The SF takes hedges into account and thus supports for-
ward-looking, risk-conscious actions. Tax effects are also considered.

6.	 Proportionality principle: The SF takes into account the legal principles of pro-
portionality and materiality. Compared to Solvency I, this implicitly means that 
the SF has a high degree of complexity, which makes simplifications necessary 
for smaller insurance companies or those with a simple portfolio.

7.	 Proof of adequacy: Solvency II has significantly improved the architecture of 
the supervisory approach. In particular, the company-specific risk and solvency 
assessment with which a company must prove the adequacy of the calculation 
method for determining the SCR is worth mentioning. This means that a rule-
based, mechanical application of the SF (as was common practice under Solvency 
I) is not sufficient to determine the SCR. In the light of the results of this assess-
ment, the supervisory authority may impose additional capital requirements.

8.	 Calculation of the SCR: Given the role of the Executive Board within ORSA 
(challenging the results of the SF), the question of how the aleatoric interpretation 
made in (3) is to be understood is of particular practical importance. Details are 
presented, e.g., in Stahl [43]. That paper focuses on a (critical) formal analysis 
and the associated horizons for interpretation.

2.1 � Critical remarks with respect to the standard formula

The SF determines the SCR of a portfolio X at t0 by a procedure which we denote by

The calculation uses key date- and market-related information, in particular the mar-
ket prices of financial instruments available at time t0 , but also parameters derived 
from time series of prices, such as yield curves, and so on. Furthermore, company-
specific information related to the reporting date, in particular the company’s risk 
exposure, denoted � , and its premiums. The exposure vector � describes the amount 
(respectively volume) of financial instruments (e.g. assets or liabilities) the insurance 

(4)�t0(X).
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company is exposed to. Due to the fact that the amount of financial instruments for 
an insurance company is huge, the dimension of � is huge as well.

The SF excludes important risk factors. The best-known example for this is gov-
ernment bond defaults. This entails the risk of regulatory arbitrage. The paradigm 
of absence of (model) arbitrage is not fulfilled by the SF. Furthermore, the SF is not 
necessarily conservative, i.e. prudent.

Product innovations (e.g. project financing as a result of the low interest phase) 
are initially not taken into account by the SF; this increases the arbitrage potential of 
the SF and the uncertainties with regard to the properties of the function.

For market risks, Mittnik [34] criticizes the calibration of the SF as insufficient 
from an econometric point of view. Stahl [43] explicitly states that the time series 
on which the calibration is based only extend up to 2009 and do not include impor-
tant aspects of stylised facts such as low interest rates, unbalanced public budgets, 
and Brexit, to name but a few. For the SF itself, Brexit is a black swan, as a num-
ber of compromises made in the negotiations with the UK are now obsolete. Braun 
et al. [9] also critically examine the market risk component of the SF. This makes an 
absolute assessment of the SF within the framework of ORSA difficult.

3 � Formal properties of the SF

Performing a risk analysis requires at least an aggregated assessment of the risk on 
the level of the consequences. This is provided by the fundamental concept of risk 
measures. In the following definition, B denotes the vector space of all bounded 
functions, defined on a fixed domain. The elements of B can be interpreted as losses 
or pay-off functions (with appropriate modifications) of financial instruments.

Definition 1  A function � ∶ B ⟶ ℝ is called a monetary risk measure, if for all 
�B1

,�B2
∈ B:

This definition also encompasses deterministic approaches and does not neces-
sarily assume an underlying stochastic structure. The latter would summarize the 
aleatoric previous knowledge.

However, thanks to Knight’s seminal work, see [29], a stochastic framework 
(Ω,A,ℙ) for describing risk and uncertainty is an established standard. So it comes 
as no surprise that Knight’s fundamental approach is also reflected in the literature 
on risk management applications. Nevertheless, uncertainty can also be represented 
without the use of a stochastic model. To this end, Augustin et al. [2] define the set 
of acceptable/desirable games as follows:

Definition 2  Ω refers to the set of elementary events. An element from the space of 
bounded functions on Ω , BΩ , is referred to as a game with uncertain result. A game 

(5)
�B1

⩽ �B2
implies �(�B1

) ⩽ �(�B2
),

m ∈ ℝ implies �(�B1
− m) = �(�B1

) − m.
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is acceptable/desirable if a player accepts it. The set of acceptable/desirable games 
is denoted by

3.1 � SF and uncertainty—aleatoric aspects

For the upcoming discussion of the stochastic model related to the SF, the following 
passage from the EIOPA document [18, p. 42] provides important insights, since it 
explicitly states that the SF stochastic model is only based on vague prior knowledge:

“Originally in the design of the SCR for non-life insurance underwriting risk, the 
lognormal distribution acted prominently as a vehicle to model a skew bell-shaped 
probability distribution. This implied a function of � that should amount more or less to 
the value 3� . Later it was decided just to focus on this simple factor and downsizing the 
explicit assumption of an exact lognormal probability distribution”.

Thus the explanations in CEIOPS technical documents, e.g. [11, 12], serve primarily 
to justify a calibration proposal rather than to specify a stochastic model. A number of 
parameter adjustments were also made as part of the QIS studies. Furthermore, vague 
stochastic modelling has the disadvantage (or, depending on the purpose, the advan-
tage) that some models can hardly be falsified.

The following investigations show to what extent the model approaches expressed 
by (1) and (2) help to understand the SF. In particular, it will be shown that the stochas-
tic component of the SF should be interpreted as subjective probabilities.

In the spirit of Sandström’s book [42], the SF may be regarded as an objective, sto-
chastic model (see Sect. 3.2) based on a probability space

which differs from internal models mainly in the (presumably conservative, i.e. pru-
dent) calibration of the parameter �.

In the following, we only consider the first layer in the hierarchy tree (visualized 
in Fig. 1) of the basic SCR, so as not to strain the notation. As already mentioned, the 
SF aggregates the SCR of vector � at this level using a correlation matrix C by the so-
called square-root formula:

which is a first indication for a stochastic model in the sense of (7) ( bt denotes 
the transposed vector of b). This motivates a closer investigation of the proba-
bilistic model underneath the SF. For the distribution of the aggregated losses, 
L = L1 +⋯ + L5 , or that of each category Li , the SF (in t0 ) determines only �-quan-
tiles at the level � = 99.5% by �t0(Li) . If �  denotes the set of all distribution functions 
on ℝ , the set

(6)D ⊂ BΩ.

(7)(Ω,A, 𝔽𝜃), 𝜃 ∈ Θ ⊆ ℝp,

�(L) ∶=
√
b C bt, b ∶=

�
�(L1),… , �(L5)

�
,

(8)�� =
{
(F1,… ,F5) |Fi ∈ � and F−1

i
(�) = �(Li)

}
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denotes the previous knowledge of the regulator about the marginal distributions Li 
of � . In addition, the SF specifies the �-quantile of L =

∑5

i=1
Li:

By the pair

we denote the entire aleatoric previous knowledge of the regulator. Obviously, �� 
specifies a large non-parametric model. In other words, the previous knowledge is 
rather vague and insofar minimal, as this is sufficient to define or interpret the SCR 
(or �t0 ) as value-at-risk as in (3). Furthermore, (10) allows a smooth aggregation of 
at least partial internal models into the SF.

Example 1  (The square-root formula) If in addition to (10), the vector � is multivari-
ate normally distributed (with �[�] = � and Pearson’s correlation matrix C ), then by 
(10) the class of suitably matched normal distributions is specified and the aggre-
gation via the square-root-formula is exactly valid. More generally, this applies to 
elliptical distributions, see Fuchs et al. [23]. However, the class of elliptical distribu-
tions is not compatible with the skewed distribution of typical insurance risks such 
as NatCat and credit default, to name but a few. In this respect, the class of elliptical 
distributions is not compatible with the empirical and epistemic (contextual) knowl-
edge about insurance risks. In this context, it is important to note that the EIOPA 
document [18] does not explicitly assume a normal distribution, but nevertheless 
uses a calculation rule with the square-root-formula that is compatible with the mul-
tivariate normal distribution. A discussion of the more general case of skewed distri-
butions can be found, e.g., in [10, 35].

Consequence 1  Let us consider a distribution F
L,�

∈ �� . Except in a few special 
cases, many of which are unrealistic for the present application,

is to be expected. In this view �� is mis-specified, as it does not meet the proper-
ties of distribution functions. From a mathematical point of view, this structural fact 
goes beyond a possibly biased conservative calibration. Let us mention the interest-
ing attempt to calibrate the correlation matrix such that equality holds in Eq. (11), 
see [35].

Example 2  (Diversification effects) We now examine possible diversification effects 
and refer to the structure of the SF as shown in Fig. 1. For this purpose, Lij denotes 
the sub-risk categories of the third layer of the basis SCR. The associated risk is 
represented by

(9)�� =
{
F ∈ � | F−1(�) = �(L)

}
.

(10)�� = (�� , ��),

(11)VaR
� 5�

j=1

Lj

� ≠ √
b C bt, b ∶=

�
�(L1),… , �(L5)

�
,
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where Rij is modelled (in this example) as a uniformly distributed random variable 
Rij , i.e. Rij ∼ U[0, 1]. The aggregation of �(Lij) is done according to the correlation 
matrix of the SF; moreover, the simulated Rij are assumed to be independent. For 
each simulation, the diversification

can be determined. The denominator corresponds to the sum of all �(Lij) , which can 
be identified by a comonotonic dependence. The box plot in Fig. 2 summarizes the 
results of a simulation of 100,000 portfolios.

For more than 75% of all portfolios, D is 60% or bigger. In relation to the risk 
categories Ri , this comes close to the extent of diversification in internal models. 
In the simulation, D was not less than 50%. Overall, no additional conservative ele-
ment comes into play through the correlation matrix. Since the module of market 
risk is not necessarily conservative (default risk of government bonds is ignored), 
this can only be achieved by calibrating underwriting techniques. In [39], Pfeifer 
explicitly proves that neither the notion of correlation nor that of tail dependence 
directly impacts the diversification. Moreover, he points out that under the risk 
measure value-at-risk, there is no connection between diversification and correlation 
of risks, which can be mathematically justified [37]. In this respect, the concepts of 

�(Lij) = Rij,

D ∶=
�(L)

∑
ij �(Lij)

Fig. 2   The box plot shows the scope of diversification D with respect to the basic SCR of the SF for 
100,000 simulated portfolios
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correlation and diversification should be interpreted with caution in the context of 
the SF.

Consequence 2  The prior knowledge �� in (10) is too vague to fully specify a dis-
tribution function compatible with the epistemic previous knowledge on the present 
application of risk-measurement for an insurance company, for which

is valid. This allows

to be interpreted only as a subjective probability, see Lindley [32]:

where K is the knowledge of the regulator. K includes:

•	 empirical data (e.g. time series of financial instruments, loss triangles, etc.),
•	 results from five QIS studies,
•	 experience from financial crises,
•	 supervisory objectives.

The interpretation (12) corresponds to the prescriptive-normative character of 
the SF. Previous knowledge �� is vague both from the perspective of the regulator 
and of an insurance company.

This provides the supervisory standard �(X) with an additional quality that 
explicates the concept of uncertainty. With the stochastic model construction, the 
regulatory standard �(X) , which can initially be implemented, converts into an 
ideal standard, i.e. its compliance can no longer be checked with certainty, see 
Barnett and O’ Hagan [7, p. 21ff]. When using ideal standards, their validation 
plays a key role. Barnett and O’ Hagan [7, p. 28], even require that ideal stand-
ards should only be used together with a given framework of validation. In any 
case, the model reference �� implies additional legitimation compared to �(X).

The vague aleatoric knowledge of the SF makes backtesting with statistical 
methods almost impossible: Indeed, the insurance company generates a time 
series of forecast intervals and associated BoF realizations with the SF at quar-
terly intervals, which results in a sequence of realizations of a Bernoulli-distrib-
uted random variable based on which it can be checked whether the 99.5% quan-
tile is violated or not. However, there is not enough data to draw reliable statistical 
conclusions on such an extreme probability in a Bernoulli experiment. As far as 
the use of statistical tests is concerned, the SF is at the limit of non-falsifiability.

In [22], Frezal investigated the assumptions of the five QIS studies and their 
impact on SCR requirements for non-life risk categories. In our terminology, 

�t0 = �(FX)

Pr
(
BoF1 ∈ (−∞,BoF0 − SCR]

)
= 1 − �

(12)Pr
(
BoF1 ∈ (−∞,BoF0 − SCR] | K

)
= 1 − �,
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this corresponds to the analysis of the available information Kt over time and the 
validity of:

for t = t1,… , t5 . He critically evaluates the high influence of Kt , since he implicitly 
assumes an objective model. He therefore concludes that the SF is not risk-based, 
since risk orders are not time-invariant, i.e. 𝛿tj(X) < 𝛿tj (Y) does not follow from 
𝛿ti(X) < 𝛿ti (Y) for i ≠ j . Thus, the use of the concept of subjective probabilities is 
necessary in order to justify the regulatory choices. Frezal’s work questions whether 
the SF is unbiased in the sense of Tversky and Kahnemann [46], i.e. meets the crite-
ria of:

•	 availability,
•	 anchoring, adjustment, and
•	 representativeness.

Consequence 3  In the theory of subjective probabilities a concept of coherence is 
applied, see [32, p. 92]. This concept should not be confounded with that of coherent 
risk measures. Subjective probabilities are called coherent, if they fulfill the rules 
of probability calculus. In order to satisfy the probabilistic requirements for coher-
ence, the term (11) must be an equality. However, knowing the correlations alone 
will in general not fully specify the copula of � = (L1,… , L5) , hence, the probability 
related to �t0(X) is not a coherent subjective probability.

Consequence 4  Related to the SF a cascade of different, however, interlinked mod-
els is simultaneously introduced:

1.	� At a first purely computational level, the SF implements an algorithm, which 
motivates the terminology ‘standard formula’. This formula or procedure trans-
forms an input (a given portfolio X) to an output by the mapping X ↦ �t0 (X) 
(the calculated SCR). While in mathematical terms a function has to be a well-
defined mapping, within the SF the user has some degrees of freedom that might 
be interpreted as model risk. For instance, the universe of all risk factors an 
insurance company is exposed to has to be projected onto a small subset of 
standard risk factors. In this nontrivial modeling step, different insurance com-
panies might use differing assumptions and thus might end up with individually 
customized ‘standard formulas’.

2.	� At a second normative level, the SF should be interpreted as a (regulatory) pre-
mium for the portfolio X. If the undertaking’s basic own funds ( BoF0 ) surpass 
its SCR, i.e.

Pr
(
BoF1 ∈ (−∞,BoF0 − SCR] | Kt

)
= 1 − �,

BoF0 > SCR = 𝛿t0(X),
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then X is considered as an acceptable game for the regulator, i.e. X ∈ D . The 
set of portfolios that are considered acceptable by the regulator constitutes a 
proper subset of all portfolios, and, hence, an equivalence relation ≡accept (two 
portfolios are in relation if both are acceptable, resp. both are not acceptable) 
capturing the regulator’s preferences. The space of all portfolios equipped with 
the equivalence relation ≡accept has a richer structure than that related to �t0(X) , 
because the normative element of the SF is not considered in the purely arith-
metic expression. This space, expressing the regulator’s preferences, shows 
moderate uncertainties. The latter stem from the fact that the SF shortcomings’ 
vary from country to country and from undertaking to undertaking.

3.	� At a third stochastic level, BoF1 in (3) is considered a random variable which 
relates �t0(X) to a probability space (Ω,A, Pr) . The stochastic model (Ω,A, Pr) 
shows the highest degree of uncertainty compared with the arithmetic expres-
sion �t0(X) and the normative level. This follows from the fact that (Ω,A, Pr) is 
built on both of the above interpretations and, thus, their uncertainties carry 
over. Furthermore, the stochastic model (Ω,A, Pr) is a result of expert opinions 
and various distributional assumptions, see [22]. Hence, stochastic uncertain-
ties come into play.

3.2 � Axiomatics of the SF

The following (axiomatic) criteria formulate (mostly desirable) properties of risk 
measures, see Denuit et al. [16], Föllmer and Weber [21], and Rüschendorf [41]. In 
the following, they are used to assess the axiomatic properties of the SF. In addition 
to their formal and mathematical relevance, these axioms have a substantial signifi-
cance, as they make the existing epistemic knowledge of the respective purpose or 
causes operational when these risk measures are applied in risk management. Thus, 
the importance of fulfilling these axioms goes beyond the purely mathematical pur-
pose and reflects the level of understanding of the necessities of risk management 
implemented in the SF.

We consider the axioms with regard to their fulfillment by the probability func-
tional and the capital functional.

3.2.1 � Analysis of the probability functional

1.	 Law invariance: If the random variables L and M are equal in distribution (i.e. 
L

d
=M ), then �(L) = �(M) must hold for a law-invariant risk measure. This crite-

rion states that the risk measure is a function of the distribution function FL and 
is linked to the representation of a risk measure as a statistical functional (1). As 
Denuit et al., [16, p. 64], explain, this approach is based on the interpretation of 
objectivity when 
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 can be estimated using the empirical distribution function F̂n(l) : 

 Since the latter can be determined from data, this allows the model approach 
associated with (13) to be interpreted as objective. More generally, this interpre-
tation assumes an objective, stochastic model (Ω,A, � ), which models the alea-
toric previous knowledge about L. As already shown, the aleatoric model of the 
SF with �� uses only vague or subjective probabilities, see Augustin et al. [2], 
Baudrit and Dubois [8], and Aven et al. [5]. In addition, L

d
=M defines an equiva-

lence relation on the set of random variables. The same applies to �� : 

 Obviously, the equivalence classes belonging to the two relations (equal in dis-
tribution versus sharing only some �-quantile) are of different size. This is not 
only an interpretation of the degree of aleatoric previous knowledge, but also 
shows the granularity that is a basic prerequisite for stochastic modelling.

2.	 No inappropriately low assessment of risk: This is formulated in Denuit et al. [16] 
by the requirement 

 As is well known, the value-at-risk as a risk measure does not necessarily meet 
this requirement, see, e.g., Denuit et al. [16]. Hence, this criterion cannot for-
mally be fulfilled by the SF, although the high level � in Solvency II is indicative 
of its validity in practice. For many cases of practical relevance, moreover, (14) 
can be proven within the framework of ORSA.

3.	 Monotonicity: 

Observation 1  The SF is not monotone.

Pfeiffer showed that neither the standard deviation nor the standard deviation 
principle meet the criterion of monotonicity, see [38]. Since for the non-life cate-
gory, the premium and reserve risk use the standard deviation as a risk measure, 
�(X) within the context of the SF cannot meet the monotonicity condition. Further 
details, especially regarding assumptions on the log-normal distribution, can be 
found in Hamel and Pfeifer [26].

3.2.2 � Analysis of the capital functional

1.	 No inappropriately high assessment of risk: For L ∼ FL , Denuit et al. [16] use the 
criterion 

(13)�(L) = T(FL)

�̂(L) = T(F̂L) = T
(
F̂n(l)

)
.

L ≃� M ⟺ F−1
L
(�) = F−1

M
(�).

(14)�(L) ⩾ 𝔼[L].

Pr(L ⩽ L̃) = 1 ⟹ 𝛿(L) ⩽ 𝛿(L̃).
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 For all FL ∈ �� , (15) is formally true at each level, where the SCR is calculated, 
see Fig.  1. However, the validity of this relation cannot be taken for granted 
because it is hardly to be backtested against reality. This argument is also true 
for the way how the SCRs of different risk categories or levels are aggregated by 
means of the correlation matrix.

2.	 Translativity: 

Epistemically, the role of capital, c in (16), in risk management and the regulation 
of financial markets can hardly be overestimated. In the representation of these 
systems by cybernetic feedback loops, capital takes over the function of a regula-
tor, i.e. it allows the system to be kept in balance (homeostasis).

It is therefore not surprising that the requirement (16) is a central one. Pflug 
and Römisch [40, p. 39] concretize the above explanations with regard to coher-
ent capital functions. These determine the capital amount c necessary for the 
acceptability of the position �B , so that �B + c is acceptable, i.e.: �B + c ∈ D.

Proposition 1  The SCR of the SF does not fulfill the property (16) of translativity.

Proof  The following rule determines the OpRisk SCR:

where Π denotes the premiums. In (17) the components of the right side do not 
come from different categories: both the premium, Π , and the Basis-SCR are capital 
functionals. But the premium Π does not depend on capital c, thus (16) can never be 
fulfilled if the minimum is attained by the first argument 3% × Π . 	�  ◻

Remark 1  The above argument shows that (additional) capital might not be con-
sidered in �OP . Hence, the SF has a precautionary component and the SF creates a 
liquidity buffer. In the light of (16), at least

is required by a risk measure, since there may well be normative reasons to prefer a 
more conservative approach than that determined by (16). It was implicitly assumed 
in (18) that cash is a financial instrument that can be added.

3.	 Subadditivity: �(�B1
+ �B2

) ⩽ �(�B1
) + �(�B2

).

Proposition 2  The SF is not subadditive.

(15)�(L) ⩽ F−1
L
(1).

(16)�(�B − c) = �(�B) − c; c ∈ ℝ.

(17)�OR(X) = min{3% × Π, 30% × Basis-SCR},

(18)�(�B + c) ⩾ �(�B) + c
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Proof  We consider two (non-life) insurance companies V1 and V2 with a basic-SCR 
( �b ) in the amount of �b(V1) = 10 and �b(V2) = 100 . Furthermore, for gross premi-
ums Π(V1) = 897 and Π(V2) = 3 apply, thus it follows that

For the merged company V ∶= V1 + V2 one gets:

	�  ◻

4.	 Positively homogeneous: 𝛿(cX) = c𝛿(X); c > 0.

Remark 2  The SF is positively homogeneous. Without the property of homogeneity, 
the SF would not be applicable simultaneously in different currency areas, as the 
SCR would then depend on the currency. 

5.	 The requirement of continuity, i.e. for a sequence of portfolios {Xn}n∈ℕ , 

 applies for a risk, capital, or probability function, which is obviously a desir-
able property, since each model per se represents an approximation of reality, 
and thus implicitly presupposes a continuity concept. On the other hand, the 
choice of the norm or the topology (that we did not specify above) reflects pre-
vious knowledge, but is moreover in a meaningful connection with the purpose 
intended by the use of the model.

Remark 3  If {�n}n∈ℕ denotes a sequence of exposure vectors related to the SF, then 
the following applies:

where Xn and X denotes the portfolios belonging to the exposure vectors, 
respectively.

Proof  All evaluation mappings within the SF for individual risks, and the procedure 
to combine them, are continuous functions and so is their concatenation. 	�  ◻

�SF(V1) =�b(V1) +min{0.3 × �b(V1), 0.03 × Π(V1)} = 10 + 3,

�SF(V2) =�b(V2) +min{0.3 × �b(V2), 0.03 × Π(V2)} = 100 + 0.09.

𝜌SF(V) =𝜌b(V) +min{0.3 × 𝜌b(V), 0.03 × Π(V)}

>𝜌b(V2) +min{0.3 × 𝜌b(V2), 0.03 ×
(
Π(V1) + Π(V2)

)
}

=100 + 27 > 𝜌SF(V1) + 𝜌SF(V2).

(19)Xn ⟶ X ⟹ �(Xn) ⟶ �(X),

(20)�n ⟶ � ⟹ �(Xn) ⟶ �(X),
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4 � Conclusion

Let us summarize the key observations made in this survey: 

1.	 The probabilities associated with FX in the SF should be interpreted as subjective 
ones. They are not coherent probabilities, e.g. the risk aggregation formula does 
not hold for distributions that are in line with the risks an insurance company is 
exposed to, see (11).

2.	 The SF does not fulfill the desiderata of Tversky and Kahneman because of a 
number of compromises chosen by the standard formula. The important work 
of Frezal, which shows that the QIS studies deteriorated risk-rankings, is a good 
example for a number of biases.

3.	 The prior knowledge �� is not compatible with the epistemic knowledge about 
insurance companies. As discussed, specifying correlations alone does in general 
not specify a copula function; an exception being the Gaussian copula. Due to 
the fact that some important risks have skewed distributions, �� is misspecified 
in the light of the epistemic knowledge.

4.	 Due to the fact that the marginal distributions are not specified and �� charac-
terizes only the quantiles, the standard formula is close to being un-falsifiable, 
because it would take too long to gather significant evidence against the vague 
knowledge represented by �� . Moreover, the correlation matrix underpinning the 
SF cannot be evaluated based on �� . This is related to the fact that the correlations 
depend on both the dependence structure and the marginal distributions.

5.	 Interpreting �t0(X) as a game, the induced preferences show little structure, as the 
SF lacks many desired axioms of quantitative risk management.

Concluding, the SF lacks sound economic and mathematical reasoning, even mini-
mal requirements (such as monotonicity, no arbitrage, etc.) are violated. The pro-
gress compared to Solvency I is not as big as expected. The absence of mathematical 
structure and scientific rigour makes the use of the SF as a tool of control somewhat 
delicate. A further consequence of these observations is that it does not seem ade-
quate to use the SF as a benchmark for internal models, because the model uncer-
tainty of the SF is not estimable. The SF, thus, should not serve as an anchor for 
internal models.
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