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Abstract. Rough-Fuzzy Support Vector Clustering (RFSVC) is a novel soft computing derivative of the classical

Support Vector Clustering (SVC) algorithm used successfully in many real-world applications. The strengths of

RFSVC are its ability to handle arbitrary cluster shapes, identify the number of clusters, and effectively detect

outliers by using the membership degrees. However, its current version uses only the closest support vector of

each cluster to calculate outliers’ membership degrees, neglecting important information that remaining support

vectors can contribute. We present a novel approach based on the ordered weighted average (OWA) operator

that aggregates information from all cluster representatives when computing final membership degrees and, at

the same time, allows a better interpretation of the cluster structures found. Particularly, we propose the OWA

using weights computed by the linguistic and exponential quantifiers. The computational experiments show that

our approach obtains comparable results with the current version of RFSVC. However, the former weights all

clusters’ support vectors in the computation of membership degrees while maintaining their interpretability level

for detecting outliers.
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1 Introduction

Clustering is a well-known data mining task which has been studied extensively in the machine learning
and statistics literature [9–11, 28, 32, 33, 46]. As one of the main steps of the Knowledge Discovery in
Databases (KDD) process [8], it aims at finding groups of similar objects in a data set. These algorithms
use a wide spectrum of search strategies in the data space or in a different feature space. Among the most
currently used strategies are those techniques which are based on some kind of prototype representation,
such as cluster centers in k-means approaches [9] or certain shell prototypes in shell clustering [41].
However, the growing availability of data according to the basic definition of Big Data (Volume, Variety,
Velocity) [46], leads to more complex structures in data sets where the previously mentioned prototypes
are not always the most appropriate alternatives for representing clusters.

Support Vector Clustering [3] and its recently introduced soft-computing derivative Rough-Fuzzy
Support Vector Clustering (RFSVC) [35], offer an interesting alternative. In both algorithms, clusters
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are represented by observations that are called support vectors allowing a more flexible representation of
the groups of data. Instead of just one center, these groups are represented by several support vectors
reflecting the spread within the cluster structure. SVC as well as RFSVC identify furthermore so-called
inside data points; each one of these observations belongs completely to exactly one of the clusters found.
Objects outside the clusters are called bounded support vectors.

Since uncertainty modeling is a relevant issue in clustering, numerous approaches such as fuzzy c-means
[4], rough c-means [19, 27], shadowed c-means [24], and hybrid approaches like rough-fuzzy c-means [21]
and rough-fuzzy support vector clustering [35], have been proposed in the literature. The main difference
between these approaches and the classic (dichotomous) methods is that the latter assigns each object to
one cluster whereas, in the former, this fact does not hold necessarily. For example, RFSVC determines
the membership degrees for each bounded support vector to all clusters based on its distances to the closest
support vector for each cluster. However, since multiple support vectors represent each cluster, important
information on the clusters’ shapes is lost. This approach is similar to Single Linkage Clustering [12, 37]
in conventional hierarchical clustering in which the minimal distance between two clusters is taken into
account when deciding which pair of clusters to merge. An alternative would be to consider the average
distance to all support vectors, similar to Average Linkage Clustering [40].

In this paper, we propose a more holistic approach, taking into account all support vectors of each
cluster at the same time when calculating an observation’s membership degree to that cluster. The
problem of aggregating information from more than one source is how to perform it. To solve this problem,
we use the Ordered Weighted Average (OWA) operator [43] to consider all support vectors simultaneously
in the calculation of membership degrees, thus taking all relevant information into account. Among all
possible ways to determine the aggregation weights, we propose using the OWA based on linguistic and
exponential quantifiers. This particular approach has the advantage that cluster shapes will be taken
into account, thus providing a more meaningful interpretation of the results, as will be shown below.

The rest of the paper is arranged as follows: Section 2 provides an overview of the relevant literature.
In Section 3 the proposed methodology for Rough-Fuzzy Support Vector Clustering using the OWA
operator is presented. Its potential is shown in Section 4 in several computational experiments. In
Section 5 we conclude our work and hint at possible future developments.

2 Literature Review

2.1 Ordered Weighted Average and Clustering Applications

Yager [43] proposed an ordered weighted average (OWA) operator which aggregates numbers coming
from different sources of information. An OWA operator of dimension n is a mapping from Rn to R that
has an associated weighting vector w ∈ Rn such that

∑n
j=1 wj = 1 and wj ∈ [0, 1], and is given by:

OWA (a1, . . . , an,w) =

n∑
j=1

wjbj (1)

where bj is the j-th largest aj . A wide range of possible aggregation operators can be obtained when
varying the weighting vector. The next ones are worth noting among others [7, 23]:

• If w1 = 1 and wj = 0 for all j 6= 1, the OWA becomes the maximum.

• If wn = 1 and wj = 0 for all j 6= n, the OWA becomes the minimum.

• If wj = 1
n for all j = 1, 2, . . . , n, we get the arithmetic mean or the simple average.

• The olympic OWA appears if wj = 1
n−2 for all j 6= 1, n and w1 = wn = 0.

There are many approaches in the literature for obtaining the OWA weights [7, 18, 23]. A common
approach is to use linguistic quantifiers [20]. The weights are generated by using a regular increasing
monotone (RIM) function Q : R → R as follows:

wj = Q

(
j

n

)
−Q

(
j − 1

n

)
∀j = 1, 2, . . . , n (2)
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Equation (2) guarantees the weights generated accomplish
∑n
j=1 wj = 1 and wj ∈ [0, 1]. The RIM

quantifiers used in this study [20, 22] are:

• The basic linguistic quantifier:
Q(r) = rα (3)

• The quadractic linguistic quantifier:

Q(r) =
1

1− α · r0.5
(4)

• The exponential linguistic quantifier:
Q(r) = e−α·r (5)

• The trigonometric linguistic quantifier:

Q(r) = arcsin(α · r) (6)

where α > 0. The OWA operator is monotonic, commutative, bounded, and idempotent [43]. To
characterize the aggregation, there are several measures including the degree of orness-andness and the
entropy of dispersion [14]. The degree of orness is formulated as follows:

orness(w) =
1

n− 1

n∑
j=1

(n− j)wj (7)

The orness measure was introduced in [43] as an appealing property (attitudinal-character) of the
OWA operator. The orness quantifies the degree of disjunctive behavior of an aggregation operator.
Disjunctive operators combine the values as an “or” operator, by which the aggregation result is high if
some (at least one) values are high. On the other hand, conjunctive operators combine the values as an
“and” operator so that the final result of aggregation is high, if and only if, all the individuals are high
[14]. It is worth noting that the andness is the complement of orness, i.e.:

andness(w) = 1− orness(w) (8)

Finally, the entropy of dispersion is defined as:

E(w) = −
n∑
j=1

wj ln(wj) (9)

where E(w) characterizes how uniformly the input values are being used in the OWA operator [18].
The OWA operator has been applied successfully in many areas such as engineering, medicine, and

finance, among others [7, 42, 44]. Many works have recently been proposed in the literature using OWA in
the context of clustering, for example [5, 6, 17, 25, 26, 30, 31]. Chakraborty and Chakraborty [6] proposed
a new methodology for group decision making based on fuzzy clustering. The clustering algorithm is used
to partition the opinion of the experts; then the OWA operator aggregates the clustered opinions to build
a ranking. The method is applied in a flight simulator. Nasibov and Kandemir-Cavas [25] integrated
the OWA operator within the context of hierarchical clustering to find the distances between clusters.
The aggregation operator acts as a generalized case of single linkage, complete linkage, and average
linkage algorithms successfully producing results in the case of clustering the phylogenetic tree of protein
sequences.

Rahmanimanesh and Jalili [30] developed an anomaly detection method in cluster-based mobile ad hoc
networks with an ad hoc on demand distance vector routing protocol. In this context, cluster members
periodically send votes to the cluster head and the final decision on attack detection is carried out. In their
methodology, an adaptive ordered weighted averaging (OWA) operator is used for aggregating the votes
of cluster members in the cluster head to make the final decision. In other line, Ren et al. [31] developed
a new customer satisfaction index applied to the tourist industry based on fuzzy clustering. The fuzzy
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c-means algorithm is used to construct clusters among the customers surveyed in order to obtain weights
to build the final index. The OWA operator is used to aggregate the information extracted from clusters
and to gain insights. A new class of aggregation operators called majority-clusters DOWA (MC-DOWA)
operators, was proposed in [17]. The aim of these operators is to aggregate elements by classification to
stress the majority clusters in the aggregation process. It was applied to improve the results in a group
decision-making context over already classified data.

Finally, Cena and Gagolewski [5] generalized the well-known single, complete and average linkage
schemes by emboding the expert knowledge in the cluster merge process using a three stage OWA op-
erator. Their results show by robustifying the aggregation procedure with the Genie correction, they
can obtain a significant performance boost in terms of clustering quality. In [26], based on users’ inter-
actions with social networks, the authors developed a method to understand users’ life-styles using the
OWA operator integrated with hierarchical clustering to find the similarity between users and clusters.
Specifically, a two step measure was defined to compare and aggregate clusters. The descriptions of user’s
lifestyles were obtained from previously reported experiences on social network sites. Community forums
can use this approach to identify which individuals on the platform with shared lifestyles are best suited
to answer questions from a perspective similar to that of the individual asking the question.

Based on the literature reviewed, it can be concluded that almost all of the related clustering work is
focused on using OWA in a pre-processing or post-processing step of the clustering task to obtain a final
decision according to the situation studied. The OWA operator was not used to compute membership
degrees since the majority of clustering approaches were center-based. The Support Vector Clustering
algorithm [3] and its recently introduced soft-computing derivative Rough-Fuzzy SVC [35] report more
than just one prototype per cluster found, leaving an open question on how to aggregate the prototype
information to compute the final membership degrees. In this paper, we propose a methodology using
OWA operators to answer this question.

2.2 Rough-Fuzzy Support Vector Clustering

In 2016, Saltos and Weber [35] introduced a new soft-computing version of the Support Vector Clustering
algorithm called Rough-Fuzzy Support Vector Clustering (RFSVC), which is the basic clustering method
of the approach introduced in this paper. The contribution made by RFSVC is constructing a rough-fuzzy
partition of the dataset using Support Vector Domain Description (SVDD) [39], where outliers can be
clearly identified and separated from the clusters found.

The RFSVC algorithm has three stages that will be explained below in more detail. First, there is
a training phase, in which SVDD is used to obtain a hypersphere (in a higher-dimensional, projected
feature space) that encloses most of the data points. All observations that fall outside its boundary are
considered outliers. Then, in the subsequent labeling phase [3], different clusters within the set of data
points enclosed by the hypersphere are distinguished. Finally, a fuzzification phase is performed over
those objects that were classified as outliers in the first stage. The novelty of RFSVC lies in this step,
in which each outlier gets membership degrees to every cluster found. A formal description of the three
phases follows.

2.2.1 Training Phase

Let X = {xi ∈ Rd/i = 1, . . . , N} be the set of N data points of dimension d. The first step projects the
data to a reproducing kernel Hilbert space (RKHS), in which a hypersphere with minimal radius that
encloses most of the training objects is constructed. The following quadratic optimization problem is
solved:

MinR,a,ξ R
2 + C

N∑
i=1

ξi (10)

s.t.

‖ φ(xi)− a ‖2≤ R2 + ξi ∀i = 1, . . . , N (11)

ξi ≥ 0 ∀i = 1, . . . , N, (12)
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where R is the radius of the sphere and a its center; φ is a non-linear mapping; ξ is a set of slack
variables used to allow some observations falling outside the hypersphere; ‖ · ‖ is the Euclidean norm;
and C ∈ [0, 1] is a constant regularization parameter that controls the trade-off between the volume of
the sphere and the number of data points it includes. The dual formulation of the previous model is as
follows:

Maxβ

N∑
i=1

βiK(xi,xi)−
N∑
i=1

N∑
j=1

βiβjK(xi,xj) (13)

s.t.

N∑
i=1

βi = 1 (14)

0 ≤ βi ≤ C ∀i = 1, . . . , N, (15)

where β are Lagrange multipliers and K(xi,xj) = φ(xi) · φ(xj) is the kernel function. A widely used
kernel function is the Gaussian kernel, which is given by:

K(xi,xj) = e−q‖xi−xj‖2 (16)

where q > 0 is a parameter that controls the kernel’s width [36].
It can be shown that only objects i with 0 < βi < C define the contours of the clusters [3], and are

called support vectors (SV). Objects with βi = 0 lie inside the hypersphere and are called inside data
points (ID). Finally, objects with βi = C lie outside the hypersphere and are called bounded support
vectors (BSV) or outliers.

The common understanding is that outliers are very different from the main clusters, they are treated
separately. However, the bounded support vectors could lie close to the clusters. In order to be consistent
with the literature (See [3, 34]), in this paper we also call them outliers.

For a given object x, the distance between its projection and the center of the hypersphere, a, can be
calculated as:

R2(x) =‖ φ(x)− a ‖2

= K(x,x)− 2

N∑
i=1

βiK(xi,x) +

N∑
i=1

N∑
j=1

βiβjK(xi,xj) (17)

The radius of the hypersphere follows:

RS =
1

|SSV |
∑

xi∈SSV
R(xi) (18)

where SSV is the set of Support Vectors and |SSV | its cardinality.
The quadratic optimization problem of the training phase can be solved by many efficient algorithms.

We used the Generalized Sequential Minimal Optimization (GSMO) algorithm, proposed in [13].
Fig. 1 illustrates a geometrical interpretation of the SVDD algorithm, in which Fig. 1(a) describes

the objects’ projection to a higher-dimensional space and the construction of the hypersphere, while in
Fig. 1(b) the images of data points are projected back to the original space.

2.2.2 Labeling Phase

The training phase outputs the sets of support vectors, bounded support vectors, and inside data points.
The main drawback is that many clusters may coexist within the hypersphere without being distinguished.
Ben-Hur [3] proposed the following strategy to overcome this problem: Given two data points from
different clusters, xi and xj ; any path that connects them must exit the hypersphere, i.e., ∃λ ∈ [0, 1],
such that R(yi,j) > RS , where yi,j = yi,j(λ) = λxi + (1 − λ)xj . This leads to the definition of the
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(a)

(b)

Figure 1: General Idea of RFSVC (+: Inside Data Points, ⊕: Support Vectors, x: Bounded Support
Vectors). (a) Projection from Original Data Space to Higher-Dimensional Space. (b) Inverse Projection
from Enclosing Sphere to Cluster Contours.

adjacency matrix A, whose elements ai,j represent whether or not a pair of points xi and xj belongs to
the same cluster.

ai,j =

{
1, if R(yi,j) ≤ RS ,∀λ ∈ [0, 1]

0, otherwise
(19)

Clusters are now defined as the connected components of the graph induced by A. Note that the
bounded support vectors remain unclassified since they lie outside the enclosing hypersphere.

This labeling rule is known as Support Vector Graph [3]. One drawback of this strategy is the high
computational complexity [29]. As a consequence, more efficient labeling approaches have been proposed
in the literature, e.g., Proximity Graph Modeling [45], Cone Clustering Labeling [15], and Fast and Stable
Labeling [16], among others. The issue of cluster labeling is beyond the scope of our paper. We used the
previously described Support Vector Graph approach in our experiments.

2.2.3 Fuzzification Phase

Saltos and Weber [35] introduced a fuzzification phase to calculate the membership degrees of bounded
support vectors to the clusters created in the preceding phases. The strategy is:

1. Cast the hard cluster structure established in the training phase into a rough-fuzzy one based on
two components: a lower approximation and a fuzzy boundary.

2. Assign the support vectors and inside data points to the lower approximations of their respective
clusters according to the labeling phase.

3. Assign the bounded support vectors to the fuzzy boundaries of all clusters.
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4. Calculate the membership degree µi,k of bounded support vector i to cluster k using the following
equation:

µi,k = µ(BSVi, SVk,i) = K(BSVi, SVk,i)

= e−q‖BSVi−SVk,i‖2 (20)

where SVk,i is the closest support vector in cluster k to the bounded support vector i.

Table 1 summarizes the outputs of each algorithm’s phase, where µi,k is the membership degree of
data point i to cluster k.

Table 1: Outputs of the RFSVC Algorithm

Phase Output

Training Sets of SV,BSV, and ID
Labeling µi,k ∈ {0, 1} ∀i ∈ SV ∪ ID ∀k ∈ C

µi,k = 0 ∀i ∈ BSV ∀k ∈ C
Fuzzification µi,k ∈ [0, 1) ∀i ∈ BSV ∀k ∈ C

A comprehensible application of this method using a two-dimensional synthetic data set can be found
in [35].

3 Proposed Methodology for RFSVC using OWA Operators

As pointed out in Section 2.2.3, the membership degrees of bounded support vectors (BSV) are calculated
using the closest support vector of each cluster at hand. Another option proposed in [35] is calculating
the membership degrees using the average distance of BSV to the support vectors that define each cluster.
These approaches have advantages and disadvantages. In the first case, the membership degrees offer a
good level of interpretability, i.e., if this value is close to one, we know which outside data points are
well represented by the current cluster structure while, if it is close to zero, we know which of them are
outliers. However, the closest support vector approach does not take all the information provided about
the cluster by the remaining support vectors into account. On the other hand, the second approach (i.e.
average distance) uses all support vectors to compute the membership degrees of the bounded support
vectors, however, the distance between support vectors could be “high” leading to small values of the
membership degrees, thus losing interpretability.

1 2 3 4 5 6 7 8

1.0

1.5

2.0

Figure 2: Example of Interpretability (Cluster 1 (left) is given by red SVs while Cluster 2 (right) by blue
SVs)

For example, in Figure 2, the orange point (4;1.5) is a BSV whose distance to the nearest SV of both
clusters is the same. Using the Closest Support Vector approach, the membership degree will be the same
for both clusters, while using the average, it will be higher for Cluster 1 (left) than for Cluster 2 (right).

To overcome the limitations imposed by the closest support vector approach, we introduce a weighted
aggregation method to include the information provided by all support vectors of each cluster in the
computation of membership degrees. This method is based on the Ordered Weighted Average (OWA)
operator [43] where each support vector can be weighted according to one of the following strategies:
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• Nearest Support Vector: This approach is the same as reported in [35]. We set the weight of the
nearest support vector to 1, and the remaining ones to 0.

• RIM Quantifiers: This approach computes the weights of each support vector according to the
equations (3)-(6).

• Average/Mean Approach: This approach assigns equal weights to all support vectors.

• Farthest Support Vector: This is like the nearest support vector approach but instead of using the
closest SV, it uses the farthest one.

The novel approach to computing the membership degrees is the second one, which induces each
support vector’s weight using the information provided by the RIM functions defined in Section 2.1. As a
consequence, we do not need additional information to implement this method. The Algorithm 1 presents
the new OWA-RFSVC.

Algorithm 1: OWA Rough-Fuzzy Support Vector Clustering

Input: Data set X, parameters q > 0 and υ ∈ ( 1
N , 1)

Output: Rough-fuzzy clusters with [0, 1]-membership matrix and the number of clusters c
1 Run the training phase of the SVC algorithm and obtain the set of support vectors (SV),

bounded support vectors (BSV), and inside data points (ID).
2 Run the labeling phase of the SVC algorithm and obtain the crisp cluster partition of the data

set.
3 Assign support vectors and inside data points to the lower approximation of their respective

clusters based on the labeling phase solution.
4 Assign bounded support vectors to the fuzzy boundaries of the clusters generated by the SVC

algorithm.
5 Generate the distance matrix BSV vs. SV to obtain the distance of each data point that is

outside of the sphere to each support vector.
6 Partition the distance matrix by columns according to the labeling phase.
7 for each cluster do
8 Compute the sets of OWA weights using equations (3)-(6).
9 for each xi ∈ BSV do

10 for each cluster SV do
11 Compute the preliminary membership degrees using equation (20).

12 Compute the final membership degrees using equation (1).

The main advantage of the Algorithm 1 is that it computes a customized set of weights for each cluster,
providing a more appropriate way of calculating membership degrees. Another advantage is it does not
use external and subjective information since one of the main drawbacks of aggregation operators is the
computation of the set of weights which is usually regarded as an external task of the decision-maker.
Finally, the use of different OWA weighting methods does not alter the final data partition of RFSVC,
but only the value of bounded support vectors’ membership degrees.

4 Computational Experiments

In this section, we first introduce the data sets we used to test our procedure and explain how we calibrated
the initial parameters. Then, in Section 4.2, we present the results obtained using OWA Rough-Fuzzy
Support Vector Clustering and discuss the advantages of the proposed methodology.

4.1 Description of Data Sets and Experimental Set-Up

To compare the proposed approach with previous ones, we used the same data sets introduced in [35].
The main characteristics of the data sets are summarized in Table 2.
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Table 2: Data Sets Characteristics

Name Type Instances Classes Attributes

Two Circles Artificial 4500 2 2
Three Circles Artificial 6750 3 2
Two Squares Artificial 4500 2 2
Four Squares Artificial 9000 4 2

XO Benchmark 3600 2 2
XOOut Benchmark 3603 2 2

S1-Gaussian Benchmark 5000 15 2
Unbalance Benchmark 6500 8 2
BankNote Real World 1374 2 4

Glass Real World 214 6 9
Cancer Real World 569 2 30
Quake Real World 2178 NA 4

We set the parameters for Rough-Fuzzy Support Vector Clustering according to [35]. Table 3 shows
the parameter sets for each data set tested.

Table 3: Algorithms’ Parameters

Name
RFSVC
q υ

Two Circles 5.7 1/3
Three Circles 5.7 1/3
Two Squares 5.44 1/3
Four Squares 8 1/3

XO 7 1/6
XOOut 7 1/6

S1-Gaussian 20 0.4
Unbalance 10 0.05
BankNote 0.25 0.1

Glass 0.1 0.1
Cancer 0.0001 0.20
Quake 1 0.2

The complete clustering results for the datasets used in this paper are available in [35]. All datasets
used in this study and the results using the proposed approach can be downloaded from the following
link: https://goo.gl/FmJIAx. Benchmark and real-world datasets can also be downloaded from the
well-known data repositories [1, 2, 38].

4.2 Results

To compare the results obtained using different weights inside the OWA operator, we used Maji’s valida-
tion indices [21]. In the equations presented below, Lwj and FBj are the lower approximation and fuzzy
boundary of cluster j, respectively.

• α index: This index represents the average accuracy of the c clusters. It captures the average
degree of completeness of knowledge about all clusters. A higher value of α indicates a better
cluster solution. It is given by:

α =
1

c

 c∑
j=1

∑
xi∈Lwj

w(µi,j)
m∑

xi∈Lwj
w(µi,j)m +

∑
xi∈FBj

(1− w)(µi,j)m



https://goo.gl/FmJIAx
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• α∗ index: This index represents the accuracy of the approximation of all clusters. It captures the
exactness of approximate clustering. A higher value of α∗ indicates a better cluster solution. It is
given by:

α∗ =

∑c
j=1

∑
xi∈Lwj

w(µi,j)
m∑c

j=1

(∑
xi∈Lwj

w(µi,j)m +
∑
xi∈FBj

(1− w)(µi,j)m
)

In both equations, the value of w ∈ (0, 1) represents the relative importance the lower approximation
has compared to the fuzzy boundary. It can be noted that both indices take the value of 1 if, and only if,
all the fuzzy boundaries are empty, i.e., the indices favor a crisp partition rather than a fuzzy one. Tables
4 and 5 present the results for Maji’s validity indices with different OWA weighting mechanisms: closest
support vector (CSV), linguistic quantifier (LQ), quadratic quantifier (QQ), exponential quantifier (EQ),
trigonometric quantifier (TQ), average/mean approach (AVG), and farthest support vector (FSV).

Table 4: Results for Maji’s α validity index

Instance CSV LQ QQ EQ TQ AVG FSV

Two Circles 0.9383 0.9618 0.9926 0.9561 0.9982 0.9982 1.0000
Three Circles 0.9237 0.9561 0.9945 0.9519 0.9993 0.9993 1.0000
Two Squares 0.8968 0.9204 0.9683 0.9095 0.9864 0.9864 0.9988
Four Squares 0.9427 0.9631 0.9914 0.9538 0.9973 0.9973 0.9996

XO 0.9785 0.9941 0.9999 0.9975 1.0000 1.0000 1.0000
XO Out 0.9802 0.9944 0.9999 0.9973 1.0000 1.0000 1.0000

S1 Gaussian 0.9478 0.9875 0.9995 0.9778 0.9999 0.9999 1.0000
Unbalance 0.9945 0.9985 1.0000 0.9987 1.0000 1.0000 1.0000
BankNote 0.9827 0.9832 0.9849 0.9837 0.9864 0.9864 0.9933

Glass 0.9932 0.9933 0.9938 0.9934 0.9942 0.9942 0.9967
Cancer 0.9624 0.9624 0.9625 0.9625 0.9625 0.9625 0.9686
Quake 0.7191 0.7363 0.7930 0.7361 0.8415 0.8414 0.9429

Table 5: Results for Maji’s α∗ validity index

Instance CSV LQ QQ EQ TQ AVG FSV

Two Circles 0.9382 0.9618 0.9926 0.9560 0.9982 0.9982 1.0000
Three Circles 0.9237 0.9561 0.9945 0.9519 0.9993 0.9993 1.0000
Two Squares 0.8966 0.9203 0.9683 0.9094 0.9864 0.9864 0.9988
Four Squares 0.9425 0.9631 0.9914 0.9538 0.9973 0.9973 0.9996

XO 0.9787 0.9942 0.9999 0.9976 1.0000 1.0000 1.0000
XO Out 0.9803 0.9944 0.9999 0.9973 1.0000 1.0000 1.0000

S1 Gaussian 0.9474 0.9875 0.9995 0.9778 0.9999 0.9999 1.0000
Unbalance 0.9992 0.9998 1.0000 0.9998 1.0000 1.0000 1.0000
BankNote 0.9928 0.9933 0.9951 0.9947 0.9966 0.9966 0.9998

Glass 0.9932 0.9933 0.9938 0.9934 0.9942 0.9942 0.9967
Cancer 0.9624 0.9624 0.9625 0.9625 0.9625 0.9625 0.9686
Quake 0.9677 0.9756 0.9906 0.9860 0.9958 0.9958 0.9992

As can be observed in Tables 4 and 5, the validity indices improve as we reduce the importance given
to the closest support vectors. This is congruent with the nature of the validity indices since they favor
crisp partitions. However, if membership degrees for bounded support vectors are close to zero, we lose
information about the behavior of these possible outliers.

To control the membership degrees’ loss of interpretability, we computed the orness measure for each
set of OWA’s weights. As pointed out in [14], the orness measures how much the OWA behaves as an
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Table 6: Orness Measure for different OWA Weigthing Mechanisms

Instance CSV LQ QQ EQ TQ AVG FSV

Two Circles 1.0000 0.9240 0.6872 0.9558 0.4995 0.5000 0.0000
Three Circles 1.0000 0.9219 0.6835 0.9454 0.4995 0.5000 0.0000
Two Squares 1.0000 0.9266 0.6920 0.9674 0.4995 0.5000 0.0000
Four Squares 1.0000 0.9278 0.6946 0.9712 0.4994 0.5000 0.0000

XO 1.0000 0.9148 0.6720 0.9095 0.4996 0.5000 0.0000
XO Out 1.0000 0.9152 0.6726 0.9114 0.4996 0.5000 0.0000

S1 Gaussian 1.0000 0.9254 0.6901 0.9607 0.4995 0.5000 0.0000
Unbalance 1.0000 0.9199 0.6799 0.9345 0.4995 0.5000 0.0000
BankNote 1.0000 0.9225 0.6865 0.9432 0.4995 0.5000 0.0000

Glass 1.0000 0.9153 0.6727 0.9118 0.4996 0.5000 0.0000
Cancer 1.0000 0.9108 0.6667 0.8936 0.4996 0.5000 0.0000
Quake 1.0000 0.9207 0.6823 0.9395 0.4995 0.5000 0.0000

“or” operator. Since we are interested in the BSV’s membership degree being high if it is close to at
least one SV and low if it is far from the SVs of all clusters, the set of weights must have an orness close
to one. Table 6 shows the average orness of all clusters for each weighting mechanism and dataset. The
best options to aggregate the information of all support vectors while computing the BSV’s membership
degrees are the linguistic (LQ) and the exponential (EQ) quantifiers. Both maintain an orness close to
one, thus reducing the interpretability loss.

Since the values of the validity indices obtained using different weighting mechanisms are similar,
we performed a one-factor ANOVA test to evaluate whether there is a statistically significant difference
between these values. Tables 7 and 8 present the results.

Table 7: Analysis of Variance for α validity index

Df Sum Sq Mean Sq F value Pr(>F)

Method 6 0.026824 0.004471 1.307366 0.264032
Residuals 77 0.263306 0.00342

Considering a significance level α = 0.05, given the p-value of the ANOVA test in Table 7, we do
not have enough statistical evidence to reject the null hypothesis. So, there is no significant difference
between the values of the α validity index among the weighting mechanisms. With these results, the best
weighting mechanism is the farthest support vector. However, this method does not include all SV in
the computation of the membership degrees and has the worst orness measure, losing the membership
degrees’ interpretability.

Table 8: Analysis of Variance for α∗ validity index

Df Sum Sq Mean Sq F value Pr(>F)

Method 6 0.014083 0.002347 5.99284 3.54E-05
Residuals 77 0.030157 0.000392

In contrast with the results of Table 7, in Table 8, the p-value of the ANOVA test provides enough
statistical evidence to reject the null hypothesis. So, there is a significant difference between the values of
the α∗ validity index among the weighting mechanisms. With these results, we perform a Tukey multiple
comparison test to determine which weighting mechanisms differ from the others. The results are in
Table 9.

The corresponding p-values of the weighting mechanisms that differ from the others are shown in bold
in Table 9. The quadratic, trigonometric, average, and farthest weighting mechanisms are statistically
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Table 9: Tukey Multiple Comparison Test for α∗ validation index

Method Difference Lower Bound Upper Bound p-Value

LQ-CSV 0.014925 -0.009536 0.039386 0.520989
QQ-CSV 0.030450 0.005989 0.054911 0.005678
EQ-CSV 0.013125 -0.011336 0.037586 0.667097
TQ-CSV 0.033958 0.009497 0.058420 0.001323
AVG-CSV 0.033958 0.009497 0.058420 0.001323
FSV-CSV 0.036667 0.012205 0.061128 0.000399
QQ-LQ 0.015525 -0.008936 0.039986 0.472689
EQ-LQ -0.001800 -0.026261 0.022661 0.999989
TQ-LQ 0.019033 -0.005428 0.043495 0.231797
AVG-LQ 0.019033 -0.005428 0.043495 0.231797
FSV-LQ 0.021742 -0.002720 0.046203 0.114472
EQ-QQ -0.017325 -0.041786 0.007136 0.337922
TQ-QQ 0.003508 -0.020953 0.027970 0.999458
AVG-QQ 0.003508 -0.020953 0.027970 0.999458
FSV-QQ 0.006217 -0.018245 0.030678 0.987181
TQ-EQ 0.020833 -0.003628 0.045295 0.147080
AVG-EQ 0.020833 -0.003628 0.045295 0.147080
FSV-EQ 0.023542 -0.000920 0.048003 0.066995
AVG-TQ 0.000000 -0.024461 0.024461 1.000000
FSV-TQ 0.002708 -0.021753 0.027170 0.999879
FSV-AVG 0.002708 -0.021753 0.027170 0.999879

different from the closest support vector approach. However, the first ones have the lowest orness mea-
sures, thus reducing the membership degrees’ interpretability. In contrast, the linguistic and exponential
methods are not statistically different from the nearest support vector and, at the same time, maintain
a high orness measure and interpretability.

Based on the computational and statistical results, the best options to aggregate all the support vectors
in the computation of bounded support vectors’ membership degrees are the linguistic and exponential
weighting methods. These methods provide statistically similar validity indices results to the closest
support vector approach. However, they maintain high levels of interpretability, as shown by the orness
measures.

5 Conclusions and Future Work

In this paper, we proposed the OWA Rough Fuzzy Support Vector Clustering. OWA-RFSVC is a novel
approach for computing the bounded support vectors’ membership degrees considering all support vectors
in each cluster. The main advantages of the method are:

1. It uses the information provided by all clusters’ prototypes.

2. It maintains a high interpretability level of final membership degrees.

3. It does not require external information for the OWA weights generation.

4. The OWA weights are generated using the linguistic or exponential quantifiers, which only need
the number of support vectors in each cluster.

5. There is no need to retrain the RFSVC model, which is usually computationally expensive.

We performed several computational experiments in a diverse set of data to evaluate the effectiveness
of our approach. The results showed a statistically significant difference does not exist between the
RFSVC and OWA-RFSVC when validating the final partition, which makes sense since OWA-RFSVC



54 Inteligencia Artificial 69(2022)

does not change the final clustering but only the BSVs’ membership degrees. However, the orness measure
showed not all weighting methods maintain the same interpretability level. In this case, the best options
to aggregate all support vectors’ information are the linguistic and exponential quantifiers.

Finally, one key issue in RFSVC is all bounded support vectors equally affect the center location of
the hypersphere in the higher dimensional feature space. We are investigating the use of different OWA
operators to reduce their influence to improve the robustness of RFSVC against noise. Additionally, the
approach presented in this paper can be extended to other multi-prototype clustering algorithms like
self-organizing maps.
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