Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Seção: ArtigosTítulo: A Bayesian approach to parameter estimation for Kernel density estimation via transformations / Qing Liu...[et al.]Notas: Sumario: In this paper, we present a Markov chain Monte Cario (MCMC) simulation algorithm for estimating parameters in the kernel density estimation of bivariate insurance claim data via transformations. Our data set consists of two types of auto insurance claim costs and exhibits a high-level of skewness in the marginal empírical distributions. Therefore, the kernel density estimator based on original data does not perform well. However, the density of the original data can be estimated through estimating the density of the transformed data using kernels. lt is well known that the performance of a kernel density estimator is mainly determined by the bandwidth, and only in a minor way by the kernel. In the current literature, there ha ve been sorne developments in the area of estimating densities based on transformed data, where bandwidth selection usually depends on pre-determined transformation parameters. Moreover, in the bivariate situation, the transformation parameters were estimated for each dimension individually. We use a Bayesian sampling algorithm and presenta Metropolis-Hastings sampling procedure to sample the bandwidth and transformation parameters from their posterior density. Our contribution is to estímate the bandwidths and transformation parameters simultaneously within a Metropolis-Hastings sampling procedure. Moreover, we demonstrate that the correlation between the two dimensions is better captured through the bivariate density estimator based on transformed dataRegistros relacionados: En: Annals of Actuarial Science, Vol. 5, part 2, 2011 ; p. 181-194Materia / lugar / evento: Matemática del seguroSimulación Monte CarloSeguro de automóvilesReclamacionesCálculo actuarialMétodos de estimación objetivaOutras classificações: 6Direitos: In Copyright (InC)