A Bayesian approach to parameter estimation for Kernel density estimation via transformations
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000caa a22000004b 4500</leader>
<controlfield tag="001">MAP20110065171</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20111110102747.0</controlfield>
<controlfield tag="008">111108e20110418esp|||| ||| ||spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="2">
<subfield code="a">A Bayesian approach to parameter estimation for Kernel density estimation via transformations</subfield>
<subfield code="c">Qing Liu...[et al.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper, we present a Markov chain Monte Cario (MCMC) simulation algorithm for estimating parameters in the kernel density estimation of bivariate insurance claim data via transformations. Our data set consists of two types of auto insurance claim costs and exhibits a high-level of skewness in the marginal empírical distributions. Therefore, the kernel density estimator based on original data does not perform well. However, the density of the original data can be estimated through estimating the density of the transformed data using kernels. lt is well known that the performance of a kernel density estimator is mainly determined by the bandwidth, and only in a minor way by the kernel. In the current literature, there ha ve been sorne developments in the area of estimating densities based on transformed data, where bandwidth selection usually depends on pre-determined transformation parameters. Moreover, in the bivariate situation, the transformation parameters were estimated for each dimension individually. We use a Bayesian sampling algorithm and presenta Metropolis-Hastings sampling procedure to sample the bandwidth and transformation parameters from their posterior density. Our contribution is to estímate the bandwidths and transformation parameters simultaneously within a Metropolis-Hastings sampling procedure. Moreover, we demonstrate that the correlation between the two dimensions is better captured through the bivariate density estimator based on transformed data</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080608606</subfield>
<subfield code="a">Simulación Monte Carlo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080603779</subfield>
<subfield code="a">Seguro de automóviles</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080567118</subfield>
<subfield code="a">Reclamaciones</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080625894</subfield>
<subfield code="a">Métodos de estimación objetiva</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="t">Annals of Actuarial Science, Vol. 5, part 2, 2011 ; p. 181-194</subfield>
</datafield>
</record>
</collection>