A Quantitative comparison of the Lee-Carter model under different types of non-Gaussian Innovations
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20110065553</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20111121112840.0</controlfield>
<controlfield tag="008">111110e20111003esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20110028886</subfield>
<subfield code="a">Wang, Chou-Wen</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="2">
<subfield code="a">A Quantitative comparison of the Lee-Carter model under different types of non-Gaussian Innovations</subfield>
<subfield code="c">Chou-Wen Wang, Hong-Chih Huang, I-Chien Liu</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In the classical Lee-Carter model, the mortality indices that are assumed to be a random walk model with drift are normally distributed. However, for the long-term mortality data, the error terms of the Lee-Carter model and the mortality indices have tails thicker than those of a normal distribution and appear to be skewed. This study therefore adopts five non-Gaussian distributions Students t-distribution and its skew extension (i.e., generalised hyperbolic skew Students t-distribution), one finite-activity Lévy model (jump diffusion distribution), and two infinite-activity or pure jump models (variance gamma and normal inverse Gaussian) to model the error terms of the Lee-Carter model. With mortality data from six countries over the period 1900-2007, both in-sample model selection criteria (e.g., Bayesian information criterion, Kolmogorov Smirnov test, Anderson Darling test, Cramérvon-Mises test) and out-of-sample projection errors indicate a preference for modelling the Lee-Carter model with non-Gaussian innovations</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080555016</subfield>
<subfield code="a">Longevidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080570590</subfield>
<subfield code="a">Seguro de vida</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20100033678</subfield>
<subfield code="a">Huang, Hong-Chih</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20110029364</subfield>
<subfield code="a">Liu, I - Chien</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100215</subfield>
<subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
<subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
<subfield code="x">1018-5895</subfield>
<subfield code="g">03/10/2011 Tomo 36 Número 4 - 2011 , p. 675-696</subfield>
</datafield>
</record>
</collection>