Pesquisa de referências

Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140014385</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140506102100.0</controlfield>
    <controlfield tag="008">140424e20140303esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140007608</subfield>
      <subfield code="a">Guan, Guohui</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks</subfield>
      <subfield code="c">Guohui Guan, Zongxia Liang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we investigate an optimal reinsurance and investment problem for an insurer whose surplus process is approximated by a drifted Brownian motion. Proportional reinsurance is to hedge the risk of insurance. Interest rate risk and inflation risk are considered. We suppose that the instantaneous nominal interest rate follows an OrnsteinUhlenbeck process, and the inflation index is given by a generalized Fisher equation. To make the market complete, zero-coupon bonds and Treasury Inflation Protected Securities (TIPS) are included in the market. The financial market consists of cash, zero-coupon bond, TIPS and stock. We employ the stochastic dynamic programming to derive the closed-forms of the optimal reinsurance and investment strategies as well as the optimal utility function under the constant relative risk aversion (CRRA) utility maximization. Sensitivity analysis is given to show the economic behavior of the optimal strategies and optimal utility.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/03/2014 Volumen 55 Número 1 - marzo 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>