Pesquisa de referências

Bayesian nonparametric predictive modeling of group health claims

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150006219</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150212144340.0</controlfield>
    <controlfield tag="008">150206e20150112esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150006295</subfield>
      <subfield code="a">Fellingham, Gilbert W.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Bayesian nonparametric predictive modeling of group health claims</subfield>
      <subfield code="c">Gilbert W. Fellingham, Athanasios Kottas, Brian M. Hartman</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Models commonly employed to fit current claims data and predict future claims are often parametric and relatively inflexible. An incorrect model assumption can cause model misspecification which leads to reduced profits at best and dangerous, unanticipated risk exposure at worst. Even mixture models may not be sufficiently flexible to properly fit the data. Using a Bayesian nonparametric model instead can dramatically improve claim predictions and consequently risk management decisions in group health practices. The improvement is significant in both simulated and real data from a major health insurer¿s medium-sized groups. The nonparametric method outperforms a similar Bayesian parametric model, especially when predicting future claims for new business (entire groups not in the previous year¿s data). In our analysis, the nonparametric model outperforms the parametric model in predicting costs of both renewal and new business. This is particularly important as healthcare costs rise around the world</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20120011137</subfield>
      <subfield code="a">Predicciones estadísticas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20100065242</subfield>
      <subfield code="a">Teorema de Bayes</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150006691</subfield>
      <subfield code="a">Kottas, Athanasios</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130016856</subfield>
      <subfield code="a">Hartman, Brian M.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">12/01/2015 Volumen 60 Número  - enero 2015 , p. 1-10</subfield>
    </datafield>
  </record>
</collection>