Pesquisa de referências

Mortality dependence and longevity bond pricing : a dynamic factor copula mortality model with the GAS structure

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170015093</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170602093908.0</controlfield>
    <controlfield tag="008">170518e20170403esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">1</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090011274</subfield>
      <subfield code="a">Chen, Hua</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Mortality dependence and longevity bond pricing</subfield>
      <subfield code="b">: a dynamic factor copula mortality model with the GAS structure</subfield>
      <subfield code="c">Hua Chen, Richard D. MacMinn, Tao Sun</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/ longevity bonds, we borrow CAT bond pricing techniques for mortality/ longevity bond pricing. We find that our pricing model generates par spreads that tre close to the actual spreads of previously issued mortality/ longevity bonds. </subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20090035034</subfield>
      <subfield code="a">Modelización mediante cópulas</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">03/04/2017 Volumen 84 Número S1 - abril 2017 , p. 393-415</subfield>
    </datafield>
  </record>
</collection>