Pesquisa de referências

lndifference pricing of a GLWB option in variable annuities

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>lndifference pricing of a GLWB option in variable annuities</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2017</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We investigate the valuation problem of variable annuities with guaranteed lifelong/lifetime withdrawal benefit (GLWB) options, which give the policyholder the right to withdraw a specified amount as long as he or she lives, regardless of the performance of the investment. We assume the static approach that the policyholder¿s withdrawal rate is a constant throughout the life of the contract. We apply the principle of equivalent utility to find the indifference price for a variable annuity with a GLWB contract with an equity-indexed death benefit. Using an exponential utility function, Hamilton-Jacobi-Bellman (HJB) type partial differential equations (PDEs) are derived for the pricing functions. We first assume the mortality is deterministic, and the pricing PDE is solved numerically using a finite difference method. The effects of various parameters are investigated, including the age at inception of the policyholder, withdrawal rate, risk-free rate, and volatility of the underlying asset. We also consider a roll-up option and analyze the effect of delaying the start of the withdrawals. Another pricing PDE is derived with a stochastic mortality, when the force of mortality is modeled with a stochastic differential equation. A finite difference method is used again to solve the pricing PDE numerically, and the sensitivities of the GLWB contracts with respect to the withdrawal rate and the risk-free rate are explored.</abstract>
<note type="statement of responsibility">Jungmin Choi</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592011">
<topic>Modelos actuariales</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555306">
<topic>Mortalidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>05/06/2017 Tomo 21 Número 2 - 2017 , p. 281-296</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">171017</recordCreationDate>
<recordChangeDate encoding="iso8601">20171122122200.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20170033257</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>