Pesquisa de referências

Bonus-malus systems with two-component mixture models arising from different parametric families

Recurso electrónico / electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20180017018
003  MAP
005  20180615131305.0
008  180606e20180301usa|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20140009800‎$a‎Tzougas, George
24510‎$a‎Bonus-malus systems with two-component mixture models arising from different parametric families‎$c‎George Tzougas, Spyridon Vrontos, Nicholas Frangos
520  ‎$a‎Two-component mixture distributions defined so that the component distributions do not necessarily arise from the same parametric family are employed for the construction of Optimal Bonus-Malus Systems (BMSs) with frequency and severity components. The proposed modeling framework is used for the first time in actuarial literature research and includes an abundance of alternative model choices to be considered by insurance companies when deciding on their Bonus-Malus pricing strategies. Furthermore, we advance one step further by assuming that all the parameters and mixing probabilities of the two component mixture distributions are modeled in terms of covariates. Applying Bayes' theorem we derive optimal BMSs either by updating the posterior probability of the policyholders' classes of risk or by updating the posterior mean and the posterior variance. The resulting tailor-made premiums are calculated via the expected value and variance principles and are compared to those based only on the a posteriori criteria. The use of the variance principle in a Bonus-Malus ratemaking scheme in a way that takes into consideration both the number and the costs of claims based on both the a priori and the a posterior classification criteria has not yet been proposed and can alter the resulting premiums significantly, providing the actuary with useful alternative tariff structures
650 4‎$0‎MAPA20080592011‎$a‎Modelos actuariales
650 4‎$0‎MAPA20080557379‎$a‎Bonus-malus
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
650 4‎$0‎MAPA20080590567‎$a‎Empresas de seguros
7001 ‎$0‎MAPA20180008108‎$a‎Vrontos, Spyridon
7001 ‎$0‎MAPA20180008115‎$a‎Frangos, Nicholas
7730 ‎$w‎MAP20077000239‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-‎$x‎1092-0277‎$g‎05/03/2018 Tomo 22 Número 1 - 2018 , p. 55-91