Pesquisa de referências

Remarks on the mossin theorem

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190014465</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190524085623.0</controlfield>
    <controlfield tag="008">190520e20190301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150005984</subfield>
      <subfield code="a">Hong, Liang</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Remarks on the mossin theorem</subfield>
      <subfield code="c">Liang Hong</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We establish several new results regarding the Mossin Theorem under both nonrandom initial wealth and random initial wealth. For the nonrandom initial wealth case, we show that the Mossin Theorem holds for any constrained class of insurance contracts whose maximum coverage provides full coverage of the potential loss. This result not only settles an open conjecture, but also provides a unified treatment for extant varieties of the Mossin Theorem. For the random initial wealth case, we give a thorough study of the upper-limit insurance. In particular, we show that (1) for a fair premium, the Generalized Mossin Theorem for coinsurance does not hold for upper-limit insurance, and (2) for an unfair premium, partial insurance will always be optimal, regardless of the risk preference of the individual and the dependence structure between the random loss and the random initial wealth.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080550110</subfield>
      <subfield code="a">Coaseguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/03/2019 Tomo 23 Número 1 - 2019 , p. 1-10</subfield>
    </datafield>
  </record>
</collection>