Pesquisa de referências

The Future role of Big Data and machine learning in health and safety inspection efficiency

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cam a22000004b 4500</leader>
    <controlfield tag="001">MAP20190020091</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211401.0</controlfield>
    <controlfield tag="008">140709s2019    lux||||       ||| ||eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">870</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190008792</subfield>
      <subfield code="a">Dahl, Øyvind</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="4">
      <subfield code="a">The Future role of Big Data and machine learning in health and safety inspection efficiency</subfield>
      <subfield code="c">Øyvind Dahl, Annick Starren</subfield>
    </datafield>
    <datafield tag="260" ind1=" " ind2=" ">
      <subfield code="a">Luxembourg</subfield>
      <subfield code="b">Publications Office of the European Union</subfield>
      <subfield code="c">2019</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">7 p. </subfield>
    </datafield>
    <datafield tag="500" ind1=" " ind2=" ">
      <subfield code="a">Resumen ejecutivo en español</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Most labour inspectorates collect and store huge amounts of data related to their inspection objects and their inspection activities. Thus, inspectorates potentially possess large and rapidly growing volumes of data, nowadays referred to by the term big data'. Big data, combined with machine learning technology, is being used at an increasing rate for different predictive purposes, by learning from hidden trends in the data. For example, the predictive value of big data and machine learning techniques are being tested in areas as diverse as cancer prognosis and patient outcomes, bankruptcy prediction, oil price prediction, tax fraud detection, crime prediction and stock market forecasting. The fundamental question being addressed in this paper, however, is whether or not the use of big data and machine learning technology to target high-risk inspection objects is a promising avenue for labour inspectorates.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080629724</subfield>
      <subfield code="a">Seguridad e higiene en el trabajo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080627416</subfield>
      <subfield code="a">Prevención de riesgos laborales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604974</subfield>
      <subfield code="a">Campañas de prevención</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602116</subfield>
      <subfield code="a">Inspección de trabajo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20140022717</subfield>
      <subfield code="a">Big data</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080637743</subfield>
      <subfield code="a">Europa</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190008808</subfield>
      <subfield code="a">Starren, Annick</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20080466893</subfield>
      <subfield code="a">European Agency for Safety and Health at Work</subfield>
    </datafield>
  </record>
</collection>