Size-biased transform and conditional mean risk sharing, with application to p2p insurance and tontines
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20190031936</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20191107093728.0</controlfield>
<controlfield tag="008">191105e20190902esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080096434</subfield>
<subfield code="a">Denuit, Michel</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Size-biased transform and conditional mean risk sharing, with application to p2p insurance and tontines</subfield>
<subfield code="c">Michel Denuit</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Using risk-reducing properties of conditional expectations with respect to convex order, Denuit and Dhaene [Denuit, M. and Dhaene, J. (2012). Insurance: Mathematics and Economics 51, 265270] proposed the conditional mean risk sharing rule to allocate the total risk among participants to an insurance pool. This paper relates the conditional mean risk sharing rule to the size-biased transform when pooled risks are independent. A representation formula is first derived for the conditional expectation of an individual risk given the aggregate loss. This formula is then exploited to obtain explicit expressions for the contributions to the pool when losses are modeled by compound Poisson sums, compound Negative Binomial sums, and compound Binomial sums, to which Panjer recursion applies. Simple formulas are obtained when claim severities are homogeneous. A couple of applications are considered: first, to a peer-to-peer insurance scheme where participants share the first layer of their respective risks while the higher layer is ceded to a (re)insurer; second, to survivor credits to be shared among surviving participants in tontine schemes.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080549206</subfield>
<subfield code="a">Tontinas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579647</subfield>
<subfield code="a">Compartimentación</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080604394</subfield>
<subfield code="a">Valoración de riesgos</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p. 593-617</subfield>
</datafield>
</record>
</collection>