Pesquisa de referências

Underwritting 2.0 : in an increasingly automated world, what does risk assessment look like?

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200009764</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211223.0</controlfield>
    <controlfield tag="008">200325e20200302usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20200006473</subfield>
      <subfield code="a">Rushing, Scott</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Underwritting 2.0</subfield>
      <subfield code="b">: in an increasingly automated world, what does risk assessment look like?</subfield>
      <subfield code="c">Scott Rushing</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Underwriting practices today are a world away from those commonplace 20 years ago, but the biggest evolution is yet to come. Big Data will truly transform underwriting over the next decade. Harnessing new data sources using the latest artificial intelligence (AI), machine learning (ML), and deep learning (DL) techniques will radically change every aspect of the risk assessment process. But AI also brings important threats: Deploying these new technologies without consideration of the commercial, risk, ethical, regulatory, and societal factors could have disastrous consequences. In this article, we look in-depth at how Big Data and its tools are changing underwriting.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608835</subfield>
      <subfield code="a">Suscripción de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080568009</subfield>
      <subfield code="a">Automatización</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20140022717</subfield>
      <subfield code="a">Big data</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586546</subfield>
      <subfield code="a">Nuevas tecnologías</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080601522</subfield>
      <subfield code="a">Evaluación de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080576158</subfield>
      <subfield code="a">Gestión de datos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20190020794</subfield>
      <subfield code="t">Contingencies : American Academy of Actuaries</subfield>
      <subfield code="d">Washington : American Academy of Actuaries, 2019-2024</subfield>
      <subfield code="g">02/03/2020 March-April 2020 , p. 26-31</subfield>
    </datafield>
  </record>
</collection>