The Doctor in the data
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200015130</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911211202.0</controlfield>
<controlfield tag="008">200504e20200401gbr|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">34</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20200010142</subfield>
<subfield code="a">Zabój, Maciej </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="4">
<subfield code="a">The Doctor in the data</subfield>
<subfield code="c">Maciej Zabój</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The traditional pricing model works to capture policyholder data during the quotation process. This means that the risk is assessed at that point in time, with a predefined discriminating factor (such as smokers vs non-smokers). This data may be updated following results from health assessments (such as blood tests) to assess whether, say, a non-smoking habit has changed. Preventive life insurance takes a diff erent approach. The information gathered via the traditional approach self-reported risks and habits could be extended using data obtained from a personalised monitoring device. Currently, these devices track basic health factors, such as sport activity, pulse, blood pressure, body temperature and oxygen saturation.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080570590</subfield>
<subfield code="a">Seguro de vida</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578848</subfield>
<subfield code="a">Análisis de datos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20150020208</subfield>
<subfield code="a">Wearables</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20120007895</subfield>
<subfield code="a">Dispositivos móviles</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080568641</subfield>
<subfield code="a">Digitalización</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20160013733</subfield>
<subfield code="a">Salud Digital</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20200013259</subfield>
<subfield code="t">The Actuary : the magazine of the Institute & Faculty of Actuaries</subfield>
<subfield code="d">London : Redactive Publishing, 2019-</subfield>
<subfield code="g">01/04/2020 Número 3 - abril 2020 , p. 40</subfield>
</datafield>
</record>
</collection>