Tail risk networks of insurers around the globe : an empirical examination of systemic risk for G-SIIs vs non-G-SIIs
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200015789</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200507160234.0</controlfield>
<controlfield tag="008">200507e20200601usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20090011274</subfield>
<subfield code="a">Chen, Hua</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Tail risk networks of insurers around the globe</subfield>
<subfield code="b">: an empirical examination of systemic risk for G-SIIs vs non-G-SIIs</subfield>
<subfield code="c">Hua Chen, Tao Sun</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this article, we investigate systemic risk of 157 insurers around the globe. We construct tail risk networks among these insurers using a single-index model for quantile regressions with a variable selection technique. We develop a new network-based systemic risk indices, taking into account expected tail losses of insurers, direct and indirect contagion effects, and the time-varying strength of tail risk spillover. Our systemic risk indices successfully recognize global systemically important insurers (G-SIIs). We find that on average G-SIIs are more systemically relevant than non-G-SIIs, particularly during the recent U.S. financial crisis. We also find a small group of non-G-SIIs that are more important than G-SIIs. Our results have significant implications for systemic risk regulation.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20100016923</subfield>
<subfield code="a">Riesgo sistémico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080590567</subfield>
<subfield code="a">Empresas de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150014856</subfield>
<subfield code="a">Sun, Tao</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">01/06/2020 Volumen 87 Número 2 - junio 2020 , p. 285-318</subfield>
</datafield>
</record>
</collection>