A New inference strategy for general population mortality tables
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200019046</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200604160139.0</controlfield>
<controlfield tag="008">200604e20200501bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20200013365</subfield>
<subfield code="a">Boumezoued, Alexandre </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="2">
<subfield code="a">A New inference strategy for general population mortality tables</subfield>
<subfield code="c">Alexandre Boumezoued, Marc Hoffmann, Paulien Jeunesse</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We propose a new inference strategy for general population mortality tables based on annual population and death estimates, completed by monthly birth counts. We rely on a deterministic population dynamics model and establish formulas that link the death rates to be estimated with the observables at hand. The inference algorithm takes the form of a recursive and implicit scheme for computing death rate estimates. This paper demonstrates both theoretically and numerically the efficiency of using additional monthly birth counts for appropriately computing annual mortality tables. As a main result, the improved mortality estimators show better features, including the fact that previous anomalies in the form of isolated cohort effects disappear, which confirms from a mathematical perspective the previous contributions by Richards, Cairns et al., and Boumezoued.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080599300</subfield>
<subfield code="a">Tablas de mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080553128</subfield>
<subfield code="a">Algoritmos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080552183</subfield>
<subfield code="a">Población</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20200013402</subfield>
<subfield code="a">Hoffmann, Marc </subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20200013419</subfield>
<subfield code="a">Jeunesse, Paulien </subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/05/2020 Volumen 50 Número 2 - mayo 2020 , p. 325-356</subfield>
</datafield>
</record>
</collection>