Large-loss behavior of conditional mean risk sharing
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20200029830</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20200924173953.0</controlfield>
<controlfield tag="008">200924e20200901bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080096434</subfield>
<subfield code="a">Denuit, Michel</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Large-loss behavior of conditional mean risk sharing</subfield>
<subfield code="c">Michel Denuit, Christian Y. Robert</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We consider the conditional mean risk allocation for an insurance pool, as defined by Denuit and Dhaene (2012). Precisely, we study the asymptotic behavior of the respective relative contributions of the participants as the total loss of the pool tends to infinity. The numerical illustration in Denuit (2019) suggests that the application of the conditional mean risk sharing rule may produce a linear sharing in the tail of the total loss distribution. This paper studies the validity of this empirical finding in the class of compound PanjerKatz sums consisting of compound Binomial, compound Poisson, and compound Negative Binomial sums with either Gamma or Pareto severities. It is demonstrated that such a behavior does not hold in general since one term may dominate the other ones conditional of large total loss.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080548575</subfield>
<subfield code="a">Pérdidas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080610319</subfield>
<subfield code="a">Distribución de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080576738</subfield>
<subfield code="a">Método de Panjer</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090041721</subfield>
<subfield code="a">Distribución Poisson-Beta</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20080650308</subfield>
<subfield code="a">Robert, Christian Y.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/09/2020 Volumen 50 Número 3 - septiembre 2020 , p. 1093-1122</subfield>
</datafield>
</record>
</collection>