Pesquisa de referências

Airport resource allocation using machine learning techniques

Airport resource allocation using machine learning techniques
Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20200035657
003  MAP
005  20220911190443.0
008  201110e20200601esp|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎937.42
100  ‎$0‎MAPA20200022008‎$a‎Mamdouh, Maged
24510‎$a‎Airport resource allocation using machine learning techniques ‎$c‎Maged Mamdouh, Mostafa Ezzat, Hesham A.Hefny
520  ‎$a‎The airport ground handling has a global trend to meet the Service Level Agreement (SLA) requirements that represents resource allocation with more restrictions according to flights. That can be achieved by predicting future resource allocation. This research presents a comparison between the most used machine learning techniques implemented in many different elds for resource allocation and demand prediction. The prediction model nominated and used in this research is the Support Vector Machine (SVM) to predict the required resources for each flight, despite the restrictions imposed by airlines when contracting their services in the SLA. The approach has been trained and tested using real data from Cairo international airport. the proposed SVM technique implemented and explained with a varying accuracy of resource allocation prediction, showing that even for variations accuracy in resource prediction in different scenarios, the SVM technique can produce a good performance as resource allocation in the airport.
650 4‎$0‎MAPA20080557072‎$a‎Aeropuertos
650 4‎$0‎MAPA20080563790‎$a‎Predicciones
650 4‎$0‎MAPA20080597733‎$a‎Modelos estadísticos
650 4‎$0‎MAPA20080560980‎$a‎Variaciones
650 4‎$0‎MAPA20170005476‎$a‎Machine learning
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
7001 ‎$0‎MAPA20200022077‎$a‎Ezzat, Mostafa
7001 ‎$0‎MAPA20200022084‎$a‎Hefny, Hesham A.
7730 ‎$w‎MAP20200034445‎$t‎Revista Iberoamericana de Inteligencia Artificial‎$d‎IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-‎$x‎1988-3064‎$g‎01/06/2020 Volumen 23 Número 65 - junio 2020 , p. 19-32
856  ‎$q‎application/pdf‎$w‎1108608‎$y‎Recurso electrónico / Electronic resource