Pesquisa de referências

Addressing imbalanced insurance data through zero-inflated Poisson regression with boosting

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Addressing imbalanced insurance data through zero-inflated Poisson regression with boosting</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">A machine learning approach to zero-inflated Poisson (ZIP) regression is introduced to address common difficulty arising from imbalanced financial data. The suggested ZIP can be interpreted as an adaptive weight adjustment procedure that removes the need for post-modeling re-calibration and results in a substantial enhancement of predictive accuracy. Notwithstanding the increased complexity due to the expanded parameter set, we utilize a cyclic coordinate descent optimization to implement the ZIP regression, with adjustments made to address saddle points. We also study how various approaches alleviate the potential drawbacks of incomplete exposures in insurance applications. The procedure is tested on real-life data.We demonstrate a significant improvement in performance relative to other popular alternatives, which justifies our modeling techniques.</abstract>
<note type="statement of responsibility">Simon C.K. Lee</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20090041721">
<topic>Distribución Poisson-Beta</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592059">
<topic>Modelos predictivos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170005476">
<topic>Machine learning</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 27-55</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">210218</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911190203.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210005442</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>