Pesquisa de referências

Wishart-gamma random effects models with applications to nonlife insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210022661</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210719094535.0</controlfield>
    <controlfield tag="008">210714e20210925esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080096434</subfield>
      <subfield code="a">Denuit, Michel</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Wishart-gamma random effects models with applications to nonlife insurance</subfield>
      <subfield code="c">Michel Denuit, Yang Lu</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Random effects are particularly useful in insurance studies, to capture residual heterogeneity or to induce cross-sectional and/or serial dependence, opening hence the door to many applications including experience rating and microreserving. However, their nonobservability often makes existing models computationally cumbersome in a multivariate context. In this paper, it is shown that the multivariate extension to the Gamma distribution based on Wishart distributions for random symmetric positive-definite matrices (considering diagonal terms) is particularly tractable and convenient to model correlated random effects in multivariate frequency, severity and duration models. Three applications are discussed to demonstrate the versatility of the approach: (a) frequency-based experience rating with several policies or guarantees per policyholder, (b) experience rating accounting for the correlation between claim frequency and severity components, and (c) joint modeling and forecasting of the time-to-payment and amount of payment in microlevel reserving, when both are subject to censoring.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080663520</subfield>
      <subfield code="a">Credibilidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545475</subfield>
      <subfield code="a">Tarifas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080573935</subfield>
      <subfield code="a">Seguros no vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170007913</subfield>
      <subfield code="a">Lu, Yang</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">01/06/2021 Volumen 88 Número 2 - junio 2021 , p. 443-481</subfield>
    </datafield>
  </record>
</collection>