Identifying and measuring developments in artificial intelligence : making the impossible possible
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cam a22000004b 4500</leader>
<controlfield tag="001">MAP20210030147</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20230321113805.0</controlfield>
<controlfield tag="008">211020s2021 fra|||| ||| ||eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">922.134</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Identifying and measuring developments in artificial intelligence</subfield>
<subfield code="b">: making the impossible possible</subfield>
<subfield code="c">Stefano Baruffaldi...[et.al]</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">Paris</subfield>
<subfield code="b">OECD</subfield>
<subfield code="c">2021</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">68 p.</subfield>
</datafield>
<datafield tag="490" ind1="0" ind2=" ">
<subfield code="a">OECD Science, Technology and Industry Working Papers</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper identifies and measures developments in science, algorithms and technologies related to artificial intelligence (AI). Using information from scientific publications, open source software (OSS) and patents, it finds a marked increase in AI-related developments over recent years. Since 2015, AI-related publications have increased by 23% per year; from 2014 to 2018, AI-related OSS contributions grew at a rate three times greater than other OSS contributions; and AI-related inventions comprised, on average, more than 2.3% of IP5 patent families in 2017. China's growing role in the AI space also emerges. The analysis relies on a three-pronged approach based on established bibliometric and patent-based methods, and machine learning (ML) implemented on purposely collected OSS data.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586546</subfield>
<subfield code="a">Nuevas tecnologías</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20170006503</subfield>
<subfield code="a">Transformación digital</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080567057</subfield>
<subfield code="a">Publicaciones</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20210033995</subfield>
<subfield code="a">Baruffaldi, Stefano</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20080432676</subfield>
<subfield code="a">OECD</subfield>
</datafield>
</record>
</collection>