An elementary derivation of Hattendorff's theorem
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220007276</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220301102646.0</controlfield>
<controlfield tag="008">220301e20210607esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220002240</subfield>
<subfield code="a">Shiu, Elias S. W.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">An elementary derivation of Hattendorff's theorem</subfield>
<subfield code="c">Elias S. W. Shiu, Xiaoyi Xiong </subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">For a general fully continuous life insurance model, the variance of the loss-at-issue random variable is the expectation of the square of the discounted value of the net amount at risk at the moment of death. In 1964 Jim Hickman gave an elementary and elegant derivation of this result by the method of integration by parts. One might expect that the method of summation by parts could be used to treat the fully discrete case. However, there are two difficulties. The summation-by-parts formula involves shifting an index, making it somewhat unwieldy. In the fully discrete case, the variance of the loss-at-issue random variable is more complicated; it is the expectation of the square of the discounted value of the net amount at risk at the end of the year of death times a survival probability factor. The purpose of this note is to show that one can indeed use the method of summation by parts to find the variance of the loss-at-issue random variable for a fully discrete life insurance policy.
</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY 4.0)"</subfield>
<subfield code="u">https://creativecommons.org/licenses/by/4.0</subfield>
<subfield code="9">43</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080550417</subfield>
<subfield code="a">Derivados</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080616106</subfield>
<subfield code="a">Cálculo de probabilidades</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20220002257</subfield>
<subfield code="a">Xiong , Xiaoyi</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20220007085</subfield>
<subfield code="t">European Actuarial Journal</subfield>
<subfield code="d">Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022</subfield>
<subfield code="g">07/06/2021 Volúmen 11 - Número 1 - junio 2021 , p. 319-323</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="q">application/pdf</subfield>
<subfield code="w">1114384</subfield>
<subfield code="y">Recurso electrónico / Electronic resource</subfield>
</datafield>
</record>
</collection>