Pesquisa de referências

Extending the lee-carter model with variational autoencoder: a fusion of neural network and bayesian approach

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Extending the lee-carter model with variational autoencoder: a fusion of neural network and bayesian approach</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220008563">
<namePart>Miyata, Akihiro</namePart>
<nameIdentifier>MAPA20220008563</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
<internetMediaType>application/pdf</internetMediaType>
</physicalDescription>
<abstract displayLabel="Summary">In this study, we propose a nonlinear Bayesian extension of the LeeCarter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed by a time series model fitting. To address the limitations of LC, which are attributed to the two-stage estimation and insufficient model fitness to data, single-stage procedures using the Bayesian state-space (BSS) approaches and extensions of flexibility in modeling by NNs have been proposed. As a fusion of these two approaches, we propose a NN extension of LC with a variational autoencoder that performs the variational Bayesian estimation of a state-space model and dimensionality reduction by autoencoding. Despite being a NN model that performs single-stage estimation of parameters, our model has excellent interpretability and the ability to forecast with confidence intervals, as with the BSS models, without using Markov chain Monte Carlo methods.

</abstract>
<accessCondition type="use and reproduction">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY 4.0)"</accessCondition>
<note type="statement of responsibility">Akihiro Miyata</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20100065273">
<topic>Modelo Lee-Carter</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20100065242">
<topic>Teorema de Bayes</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>05/09/2022 Volumen 52 Número 3 - septiembre 2022 , p. 789-812</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">221004</recordCreationDate>
<recordChangeDate encoding="iso8601">20221004104208.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220026123</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>