Ensemble economic scenario generators : unity makes strength
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20230021941</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20231214124036.0</controlfield>
<controlfield tag="008">231027e20230906usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20190008310</subfield>
<subfield code="a">Bégin, Jean-François</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Ensemble economic scenario generators</subfield>
<subfield code="b">: unity makes strength</subfield>
<subfield code="c">Jean-François Bégin</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Over the last 40 years, various frameworks have been proposed to model economic and financial variables relevant to actuaries. These models are helpful, but searching for a unique model that gives optimal forecasting performance can be frustrating and ultimately futile. This study therefore investigates whether we can create better, more reliable economic scenario generators by combining them. We first consider eight prominent economic scenario generators and apply Bayesian estimation techniques to them, thus allowing us to account for parameter uncertainty. We then rely on predictive distribution stacking to obtain optimal model weights that prescribe how the models should be averaged. We find that the optimal weights change over time and differ from one economy to another. The out-of-sample behavior of the ensemble model compares favorably to the other eight models: the ensemble model's performance is substantially better than that of the worse models and comparable to that of the better models. Creating ensembles is thus beneficial from an out-of-sample perspective because it allows for robust and reasonable forecasts</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080612023</subfield>
<subfield code="a">Predicciones económicas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20120003156</subfield>
<subfield code="a">Eficacia</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080594589</subfield>
<subfield code="a">Análisis comparativo</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">06/09/2023 Tomo 27 Número 3 - 2023 , 29 p.</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
<datafield tag="856" ind1="0" ind2="0">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
</datafield>
</record>
</collection>