Pesquisa de referências

Non-Life insurance risk classification using categorical embedding

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20230022023</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20231214124052.0</controlfield>
    <controlfield tag="008">231027e20230906usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20100048726</subfield>
      <subfield code="a">Shi, Peng</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Non-Life insurance risk classification using categorical embedding</subfield>
      <subfield code="c">Peng Shi, Kun Shi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article presents several actuarial applications of categorical embedding in the context of non-life insurance risk classification. In non-life insurance, many rating factors are naturally categorical, and often the categorical variables have a large number of levels. The high cardinality of categorical rating variables presents challenges in the implementation of traditional actuarial methods. Categorical embedding that is proposed in the machine learning literature for handling categorical variables has recently received attention in actuarial studies. The method is inspired by the neural network language models for learning text data and maps a categorical variable into a real-valued representation in the Euclidean space. Using a property insurance claims we demonstrate the use of categorical embedding in three applications. The first shows how embeddings are used to construct rating classes and calculate rating relativities for a single insurance risk. The second concerns predictive modeling for multivariate insurance risks and emphasizes the effects of dependence on tail risks. The third focuses on pricing new products where transfer learning is used to gather knowledge from existing products</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080573935</subfield>
      <subfield code="a">Seguros no vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080613327</subfield>
      <subfield code="a">Clasificación de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591960</subfield>
      <subfield code="a">Métodos de análisis</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20220003155</subfield>
      <subfield code="a">Seguro embebido</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170007906</subfield>
      <subfield code="a">Shi, Kun</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="g">06/09/2023 Tomo 27 Número 3 - 2023 , 24 p.</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
    </datafield>
    <datafield tag="856" ind1="0" ind2="0">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
    </datafield>
  </record>
</collection>