Combined modelling of micro-level outstanding claim counts and individual claim frequencies in non-life insurance
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20240013455</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20240830110145.0</controlfield>
<controlfield tag="008">240830e20240815che|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">219</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20170013198</subfield>
<subfield code="a">Bücher, Axel</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Combined modelling of micro-level outstanding claim counts and individual claim frequencies in non-life insurance</subfield>
<subfield code="c">Axel Bücher & Alexander Rosenstock</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Usually, the actuarial problems of predicting the number of claims incurred but not reported (IBNR) and of modelling claim frequencies are treated successively by insurance companies. New micro-level methods designed for large datasets are proposed that address the two problems simultaneously. The methods are based on an elaborated occurrence process model that includes both a claim intensity model and a claim development model. The influence of claim feature variables is modelled by suitable neural networks. Extensive simulation experiments and a case study on a large real data set from a motor legal insurance portfolio show accurate predictions at both the aggregate and individual policy level, as well as appropriate fitted models for claim frequencies. Moreover, a novel alternative approach combining data from classic triangle-based methods with a micro-level intensity model is introduced and compared to the full micro-level approach</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080573867</subfield>
<subfield code="a">Seguro de salud</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080556495</subfield>
<subfield code="a">Siniestros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080573935</subfield>
<subfield code="a">Seguros no vida</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080557287</subfield>
<subfield code="a">Automóviles</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080603779</subfield>
<subfield code="a">Seguro de automóviles</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20240020996</subfield>
<subfield code="a">Rosenstock, Alexander </subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20220007085</subfield>
<subfield code="g">15/08/2024 Volumen 14 - Número 2 - agosto 2024 , P. 623-655</subfield>
<subfield code="t">European Actuarial Journal</subfield>
<subfield code="d">Cham, Switzerland : Springer Nature Switzerland AG, 2021-2022</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="u">https://link.springer.com/article/10.1007/s13385-024-00383-7</subfield>
</datafield>
</record>
</collection>