Pesquisa de referências

Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013554</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240830124218.0</controlfield>
    <controlfield tag="008">240830e20240515bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20230005262</subfield>
      <subfield code="a">Duval, Francis</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data</subfield>
      <subfield code="c">Francis Duval, Jean-Philippe Boucher, Mathieu Pigeon</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080627904</subfield>
      <subfield code="a">Ciencias Actuariales y Financieras</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603779</subfield>
      <subfield code="a">Seguro de automóviles</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080556495</subfield>
      <subfield code="a">Siniestros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080297572</subfield>
      <subfield code="a">Boucher, Jean-Philippe</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130016573</subfield>
      <subfield code="a">Pigeon, Mathieu</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">15/05/2024 Volumen 54 Número 2 - mayo 2024 , p.239-262</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/telematics-combined-actuarial-neural-networks-for-crosssectional-and-longitudinal-claim-count-data/B6C01BF508F64D4C7A804A628F3D03E0</subfield>
    </datafield>
  </record>
</collection>