Gen IA in the insurance customer journey
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cam a22000004 4500</leader>
<controlfield tag="001">MAP20250021563</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20251212115316.0</controlfield>
<controlfield tag="008">251212s20251101che|||| ||| ||eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">216.1</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20250006782</subfield>
<subfield code="a">Jia, Ruo Alex</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Gen IA in the insurance customer journey</subfield>
<subfield code="c">Ruo (Alex) Jia, Martin Eling and Tianyang Wang</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">Geneva</subfield>
<subfield code="b">Geneva Association</subfield>
<subfield code="c">2025</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">36 p.</subfield>
</datafield>
<datafield tag="505" ind1="0" ind2=" ">
<subfield code="a">Acknowledgements -- Foreword -- Executive summary -- 1. Introduction -- 1.1 Forms of Gen AI engagement for insurance customers -- 1.2 Impacts and functions of Gen AI across the insurance customer journey -- 1.3 Scope and structure of the report -- 2. Benefits and concerns of Gen AI for insurance customers: A survey -- 2.1 Benefits of Gen AI insurance services -- 2.2 Challenges and concerns -- 3. Implications for insurers -- 4. Conclusions</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The report examines how generative AI is reshaping interactions between insurers and customers across the entire insurance lifecyclefrom product research and policy selection to claims and servicing. Based on a survey of 6,000 customers in six major markets, it finds strong interest in Gen AI's benefits such as speed, personalization, and convenience, alongside concerns about data privacy, accuracy, transparency, and loss of human touch. Customers increasingly use both insurer-provided tools and off-the-shelf platforms like ChatGPT to compare products and make decisions, which challenges traditional distribution models. For insurers, Gen AI offers efficiency gains and new engagement opportunities but requires robust governance, human oversight, and compliance with evolving regulations like the EU AI Act to mitigate risks such as bias, hallucinations, and cybersecurity threats. The report concludes that responsible adoption combining technological innovation with ethical safeguards and customer-centric strategies is essential to build trust and unlock Gen AI's full potential in transforming insurance services</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080624019</subfield>
<subfield code="a">Comportamiento del consumidor</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586546</subfield>
<subfield code="a">Nuevas tecnologías</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080588434</subfield>
<subfield code="a">Toma de decisiones</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080610364</subfield>
<subfield code="a">Eficiencia organizativa</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080596880</subfield>
<subfield code="a">Gobierno corporativo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080587628</subfield>
<subfield code="a">Riesgo tecnológico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20160007633</subfield>
<subfield code="a">Ciberriesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080550592</subfield>
<subfield code="a">Encuestas</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20080644529</subfield>
<subfield code="a">Eling, Martin</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20250004399</subfield>
<subfield code="a">Wang, Tianyang</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20240022754</subfield>
<subfield code="a">The Geneva Association</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="u">https://www.genevaassociation.org/publication/digital-technologies/gen-ai-insurance-customer-journey</subfield>
</datafield>
</record>
</collection>