BAYESIAN AND CREDIBILITY ESTIMATION FOR THE CHAIN
LADDER RESERVING METHOD

By J.R.Sanchez & J.L.Vilar

Abstract: Gisler and Wuthrich [8] describe how to calculate reserve
estimates by means of Credibility and Bayesian estimators based on the
development factors from different lines of business. This approach allows
combining individual and collective claims information to get better
estimations of the unknown reserves.

In this paper we compare the reserves estimates and the mean square error of
prediction from two different models: Credibility and Bayesian ones. The
objective is to show how the reserve estimates of these models are similar to
the classical chain ladder models under certain distributional assumptions.
The work includes a way of implementing the Bayesian model using Markov
Chain Monte Carlo methods with the programming tool WinBUGS [15].

Key Words: Bayesian Models, Chain-Ladder, Credibility Theory, Markov
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Introduction

The determination of claim reserves for the outstanding liabilities is one of
the most important tasks that an actuary performs to preserve the financial
solvency of an insurance company.

The usual way to reproduce estimates about the unknown claim amounts for
future years has been the use of forecasting methods based on the historical
information, contained in a run-off triangle structure.

In some cases, the lack of information about past claims can constitute an
obstacle to determinate reliable reserves. For that reason, actuaries often
consider on the one hand the market experience and on the other one the
company’s own experience: collective and individual information in
credibility terminology. In this way, it is possible to add more information
about the corresponding line of business.
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Credibility models allow the individual experience to be combined with the
collective by reproducing the Bithlman’s model [3] for measuring the weight
between the individual and collective claims information.

Bayesian models use the likelihood distribution of individual outstanding
claims and include the prior information (collective) in a natural way. The
advantage of the Bayesian model is that they allow more statistical
information about the reserve estimates, and also enable us to obtain the
complete predictive distribution of the possible outcomes, in order to study
risk measures.

In this paper, we focus on Bayesian models to estimate the claim reserving
amounts using the statistical package WinBUGS [15]. This package is
usually used to reproduce estimates via Markov Chain Monte Carlo
(MCMC) methods. The paper also includes the link between credibility and
Bayesian approach to statistical reasoning and model estimation. In
particular we want to prove that under certain distributional assumptions and
using non-informative priors, the reserve estimations for Bayesian and
Credibility model are similar.

The structure of this paper is as follows. The first section summarizes the
traditional chain ladder method (CLM). The second section states the
modeling assumptions of Mack [10] and introduces the way in which the
credibility theory can be implemented by means of individual and collective
development factors. The third section describes the Bayesian formulation.
The fourth section includes a numerical application using WinBUGS [15].
The last section provides the comparison results among models and set up
conclusions.

1- The Chain-Ladder Method

In the run-off triangle, each row represents an origin year i for 0 <i< |

and the column represents the development year j for 0< j<J . Ci;
denotes cumulative claims (either incurred or paid) with a delay of j years

from the origin year i .

Usually, the data consist of a triangle where | = J . However, other shapes
of claim data can be assumed. In particular, we assume that the data
information have an irregular pentagon shape where | > J as in Table (1).
Thus, the data consist of known cumulative claims for i+ j<| and
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unknown cumulative claims for i+ j > | . In this paper we add the index k

, 0 <k < K, which specifies each line of business.
The column sum of the observed cumulative claims is defined as

t
s =>C . for0<j<J),0<k<K (1)
i=0

Table 1. Loss Development Data Structure
Development Year

i/ 0 1 i J-1 J
Coox Coix CO,j,k Cosax  Cosx
Cirox Clik Cl,j,k Criik Ciix
i=J
C, ok Cyix Cix Cisax Cuix
i=J+1
Ciiox  Coiix Ciiix Ciiaik

Using this notation, the standard chain-ladder, development factors can be
calculated as

iy
fj,k:zcumk ZC JLILI/S'”], for0<j<N-1 (2

The aim of the CLM is to complete the empty triangle on the lower right
corner of the table with the help of the development factors. In this paper the

claim amount for the rows i < J has fully development and therefore we
apply the development factors to the latest amounts known for the rest of the

rows (i >J ) to estimate the unknown claim amounts:
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J-1

Cchu\l:l =C v " H fj,k 3)

j=1-i
In this way, it is possible to estimate the ultimate cumulative CfJL M and

obtain the reserve estimate for each accident year i :
CLM A CLM
Ri,k = Ci,J,k _Ci,l—i,k 4)

Additionally, we can find the estimate of the total amount of outstanding
claims as

| |
RTColIglll,k = z Ci,J,k - z Ci,l—i,k )

i=J+1 i=J+1

IAppendix (A) shows the data (claim amounts) from different lines of
business. The claims amounts were taken from Gisler and Wuthrich [8], and
were used for a practical analysis between models.

2- Credibility Theory approach

Mack [10] investigated the stochastic nature of the CLM, assuming a
distribution-free model and specifying the first two moments for the
cumulative claims, based on the following weak assumptions:

Al) Independence for the random variables Ci,j between different accident

years | .

A2) Existence of unknown factor f ; >0 and O'f > (), such that

E [Ci,m,k ‘Ci,o,k’ ’Ci,j,k:| =Ci i fj,k (6)
2

Var |:Ci,j+l,k ‘Ci,o,k RIED) Ci,j,k] =Ci k0 (7)

It is useful to work with the individual development factors to incorporate
the claims amounts of each line of business (individual risk), as

C
Y— R i,j+Lk 8
i,j.k Ci’j,k ( )

Formula (8) allows including the individual run-off triangle information
about each line of business.
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The model includes the set B;, = {Ci’t’k; i+t<,t<j,0<k< K} which

represent the complete observed information for 1+ j < | . In addition, we

consider the random variable F which consists in the set of development
factors from the chain-ladder method.

Under model assumptions (6) and (7) the first two moments for the
individual risk can be rewritten as

E(YU.,k F, Bj‘k)= Fi )

U?(Fj,k)

, (10)
Ci,j,k

Var (Y, ;, [F. B, )=
In the same way, the collective risk can be defined with mean and variance

E(Fj,k|F,ijk):F. (1)

]

2
o (F)
Var(FLk|F’ Bj,k): gl-i (12)
ik
where F;, = SE:’J;I} / SEIQ 1] represents the chain-ladder factor defined in
formula (2).
Observe that the credibility approach only uses the two first moment

assumptions for the individual and collective risk as in Mack’s model.
However, the reserve distribution is not available in both models.

The aim of the Credibility Theory is to estimate the individual credibility
factor Fj‘ired for each line of business in accordance with the individual and

collective risk information.

Gisler and Wuthrich [8] developed the credibility theory for the estimation
of the IBNR reserves, assuming a credibility factor which is similar to

Fo =a,, F/Y +(1—aj,k)|:f°” (13)

where
> FS is a weighted mean from the individual and collective

development factors.
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> Fj"id is the individual development factor for each line of business

k.
S[I—j—l]
Ind +1,k
Fik = SE._,-_I] (14)

ik

> chOu is the collective development factor for all the lines of

business (prior knowledge).
[
- () s

> @y 18 a parameter used to weight the individual and collective
development factors.
[1-j-1]
S ik
2
Ojk (16)
2

T

Uik =
[1-j-1]
Sj,k +

> O'ik is the variance for the individual development factors.

Oy = E[sz,k (Fj,k)] (17)

> z'jz is the variance for the collective factors

7} =Var| F; ] (18)

The parameters «; ,O'jz’k and sz can be estimated by using the standard

estimators developed in Buhlmann and Gisler [4].
Diagram (A) shows the relation between the standard estimator for the

individual Fj"T(d , collective ch°" and credibility F,3* development factors.
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Diagram A. Credibility Theory applied to IBNR reserves

individual factor

k=0 k=K
I—j— I-j-
F e =.SE+1,J_0 1] it _ S.[iﬂ,J_o 1
SECRE SECFR

collective factor

(i )

. K .
< >~ chml :Z ik Fjl,T(d

The unknown claim amounts C, ;, for i+ j > | are estimated using the

development factors F G in the credibility claim estimates

j-1
Chx=C,  *TIFx (19)

j=I-i
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Moreover, we can obtain the reserve estimate for each year i

Cred __ ACred
Ri,k - Ci,J,k _Ci,l—i,k (20)
and its corresponding total reserve

d 5 Acred I

Cre _ Cre

RTotaI,k - Z Ci,J,k - Z Ci,l—i,k (21)
i=J+1 i=J+1

Tables (2) and (3), summarize the estimated values for the credibility
method. These results are similar to the numerical example results in Gisler
and Wuthrich [8].

Table 2. Estimates of individual o, and collective 7

ik ot o, o}, 0, ol4 o} 7]

0 418.84 176.15  58.60 317.92 134.69 91298 336.53
1 87.39 11.25 6.56  38.22 14.64 5036  34.74
2 6.98 2.65 9.48 12.97 6.34 8.73 7.83
3 1.53 038  28.07 0.61 4.98 0.03 5.93
4 1.02 0.71 0.04 0.72 0.06 0.00 0.43
S 7.07 0.00 0.05 17.28 0.40 1.25 4.34
6 18.99 2.66 0.32 1.43 2.05 0.03 4.25
7 0.66 0.00 0.05 0.56 0.16 0.00 0.24
8 0.54 0.00 0.00 0.00 0.05 0.00 0.10
9 0.00 0.87 0.00 0.00 0.00 0.06 0.15
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Ind

Table 3. Development factors (individual F;,", collective |:jColl and

credibility F5™)

J / k Fjl,T)d Ff(;ed FjI,Td Fj(ired Fjl’r;d Fj?zred Fjl’r;d Ff}red
0 2.27 2.11 2.13 2.11 2.19 2.11 2.11 2.11
1 1.23 1.19 1.09 1.11 1.14 1.13 1.07 1.08
2 0.98 1.00 1.03 1.03 1.04 1.04 1.05 1.05
3 1.02 1.02 1.00 1.01 1.04 1.02 1.01 1.01
4 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 0.98 1.00 1.00 1.00 1.00 1.00 1.02 1.00
6 0.96 0.98 1.01 1.00 1.00 0.99 1.00 0.99
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00  0.99 1.00 1.00 1.00 1.00 1.00
1 Ind Cred Ind Cred Coll

ik FYORS FY FT™ F

1.93 2.11  3.01 2.11 2.11
1.11 .12 1.19 1.14 1.12
1.02 1.02 1.15 1.06 1.03
1.00 1.01  1.01 1.01 1.01
1.00 1.00  1.00 1.00 1.00
1.00 1.00 098 1.00 1.00
1.00 1.00  1.00 0.99 0.99
1.00 1.00  1.00 1.00 1.00
1.00 1.00  1.00 1.00 1.00
1.00 1.00  1.00 1.00 1.00

O 0N W bW~ O

3- Bayesian approach

The relation between the credibility and Bayesian approaches were
explained in Gisler and Wuthrich [8]. They replace F fl:ed by a Bayesian
estimator F fkayes as

A

Fo ~a,,F,, +(l—aj)k)Fj (22)

where Ifj . and Ifj are the individual and the collective estimators

respectively.
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Diagram (B) shows the bayesian credibility structure: the likelihood
distribution (individual risk), a prior distribution (collective risk) and a
hyper-prior distribution to generate the initial values for the development

factors |f -

Diagram B. Bayesian Credibility structure applied to IBNR reserves

s

F ~ {14, °)

Hyper-prior distribution (Initial values) ]

F = (R )
Prior distribution (collective)

F

k> J Jk’ Jk)

Likelihood distribution
(individual)
F F, Y N
B > e

Ijk|

A
Y jO (I,O,l Yi,l,l Yi,j,l \ O,KYi,l,K i,j,K

The parameters Yijx> Fj« and F; are defined as random variables and

U(ij jk/Cljk’ V i =T2(Fj)/5;;(j_l, 4, and K7 as

known constant parameters.
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The mean and variance of Y jx (individual risk) are defined like in (9) and

(10), as well as the mean and variance of Fj,k (collective risk) is defined like

in (11) and (12), respectively.

In Bayesian terminology, the likelihood function g(yljk‘ij, Jk>
describes how the random variables Y, ;, are distributed given the random
variable F;, and the known set B;, . On the other hand, the prior
distribution 7 ( f ik ‘Fj) describes the behavior about the individual
development factors Fj’k given the random variable Fj (collective factor).
Finally, the hyper-prior distribution 72'( f i )is used to generate the initial

collective factors F i

In this way, conditionally, to Y; i« and B ik » the posterior distribution of

Hz(fj, fj,k)is defined as:

L(yi,j,k‘Fj,k,B-,) ( ik‘F) (fl)

jL(yi,i,k‘Fj,k, Bj,k) ( Jk‘F ) f )dF (23)

where L(yi,j,k ‘Fj’k , Bj’k) :ﬁﬁﬁg(yi,j,k‘Fj,k ) Bj,k)

i=0 j=0 k=0

”( o fal¥oe B"k) B

The Bayesian solution to the estimation of the individual development factor
f; is given by the conditional mean FBayes = ( ik ‘Y, ik Bk ) defined

as

E(Fy [V By ) e [ a7 (50 Fu Yo By JOF dF,,
= [ fom( Yoo By ) dFy,

The link between the credibility and Bayesian factors lies when the Bayesian
model works with conjugate distributions belonging to the exponential
family distribution, in other words, if the likelihood function

g (yi’j)k ‘Fj’k , Bj'k) and the prior distributions 72'( fix ‘Fj )and 7[( fj)

24
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belong to the exponential family. Then the posterior distribution
b ( f i» f ik ‘Yi, ik B ik )belongs to the family of the natural conjugate priors.

Buhlmann and Gisler [4] show that conjugate distributions from the Normal-
Normal scheme result in a linear Bayesian factor, which is similar to the
Credibility factor (13). Therefore, we used a hierarchical model, which is
defined by distributions from the exponential family. In particular, we
suppose a Normal distribution for the likelihood and prior distribution and a
Log-normal for the hyper-prior distribution.

4- Numerical Bayesian application

Some applications of Bayesian models for outstanding reserve can be
founded in Alba [1], England and Verrall [5] [6] and Ntzoufraz and
Dellaportas [12].

Coded implementation of Bayesian models apply to IBNR reserves can be
found in Alba [2], Scollnik [14], and Verrall [16].

The first stage for the implementation of our model consists in defining a

likelihood function g (yi, ik ‘Fj,k ,B j’k) to describe the known development
factors Y. ik (upper  left  cormmer of the  table) for
Bjx ={Cipsi+t<lt<j0<k<K}.

itk>

For that sake we choose a Normal distribution with mean Fj,k and variance
U(Fjﬂk ) = O'j2 (Fjﬂk )/Ci,j,k , where Y; ;, is a random variable and U(Fj’k)
is a variance known and obtained among the individual O'jz’k from Table (2).

Observe that table (2) contains some values equal to cero. These values
cannot be employed in the implementation of the BUGS code; therefore, we
apply the following approximation

Ojx = )

. [11000 for o2, =0 o5
Oix for O'J-z,k;tO

The second stage contain a prior distribution 7 ( f ik ‘Fj) normally

distributed with mean F; and variance V(Fj ) =7’ ( F, ) / S J!’;H . Again we
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suppose that Fj is a random variable and V( Fj) is a variance known from
in Table (2).

From the credibility formula (13) we can observe that if TJ'Z,k grows larger,
then «a;, — 1.In other words, the credibility forecast equals the classical

chain ladder forecast. To approximate this last situation, we may consider
large variance setting

77, =1000 (26)
This is a non-informative prior density which reflects a total lack or

ignorance of information.

Finally the third stage of the hierarchical model contains vague independent
normal priors on W used to generate the initial development factor fj :

b ~dn0rm(y0,z<2), with g, =0, x*=1000 (27)

log( F, )= Y,
The lognormal distribution guarantees initial positive values for the
development factors f j Which guarantee the estimation of positive reserves.

Summarizing, the model is defined in its the three levels by means of
2
Yi,j,k ‘Fj,k ~ N (Fj,kan,j,k)
2
PR~ N(F7) 28)

P27k
log(Fj )=\Pj ~ N (,uo,lcz)
where ‘V'; is an auxiliary variable used to generate a lognormal distribution

for the initial development factors fj .

We can predict the future development factors by means of the estimator
factors F flf yes and the  posterior  predictive distribution

7[( f i» f i ‘Yi, ik B ik ) Unfortunately, the analysis of the marginal posterior

distribution 72'( f i Yi, ko B j,k) is not analytically tractable. However,

fiud

we can obtain a numerical approximation by MCMC methods.
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These methods include the use of the Gibbs sampler, which provides
samples from the individual conditional posterior distribution of each

parameter F; and F;,
z(f Y - z(f Y -
(fJ,k’ 1:J‘Yl,J,k’BJ,k) (f]k’ j‘ Ijk’B,k)
FiYiix Bix )= =
( | ik Tisjk J,k) ﬂ(fj,k|Yi,j,k’Bj,k) Iﬂ( ik J|Y|Jk, ; )dFj
”(fjksfj|Yijk:Bjk)_ ”( iko J|Y|Jk’ Jk)

(f|Y'Jk’ ) _.[ (Jk’ J|Y'1k’ Ik )dFi’k

£ £

o2k

(29)

”( MR Bi’k):

Considering a seed o :( ) the first iteration of Gibbs sampling

generates a sample f j(l) from the individual posterior distribution

( ‘FJ = Jk),YI’ ik B j,k) and another sample f j(,lk) from the individual

posterior distribution 7[( f ‘Fj = fj(o),Yi’jjk, Bj’k). As a result we also

obtain the first iteration for the parameter. Then, each parameter is updated
from its conditional distribution and then we finally fill the first iteration

H(l) = ( fl_(l), fl_(i)) . To fill the next iterations, for example for the iteration t,

we need to update again the conditional distribution incorporating the values

of the last iteration 6" =( f_(H), fj(ifl)). In order to incorporate the last

]

iteration t—1, we can update the parameter oY = ( fj(t), fj(i)) , successively.

More details about the Gibb sampling algorithm can be found in Gamerman

[7].
The model implementation in the computing package WinBUGS [15] is
coded in Sanchez [13].

The Bayesian mean squared error of prediction (MSE) measures the

. g . . Bayes
variability of the reserves estimations R/

MSE (R ) = E[(c_, ~E(C,, ))2 |c} =Var(C,,[C) (30)
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The difference between the Mack’s [10] and Bayesian approach (30) is that
A 2
the first one includes two parts Var(Ci,J |C) and (E(Cu |C)—CLJ) to

calculate the MSE, and the second ones represents all the uncertainty only by
means of Var(Ci’ 3 |C), which contains the uncertain parameters from the

posterior distribution of all parameters.

WinBUGS yields the estimated factors f ffyes which include the MSE

variability. Subsequently, these estimator factors can be used to estimate the
mean and variance of the unknown cumulative variates Y, ; .

This way, it is finally possible to obtain directly the reserve jointly with the
predictive distribution of the outstanding claims.

Thus, the estimations of the unknown claim amounts C, ;, for the rows

(i > J) are given by the development factors f J-B,f Ve
J-1

Cove =Cy ¥ f, for i>3,j>1-i,0<k<K 31)
e

Now, it is possible to obtain the reserve estimate for each year i
Bayes __ (= Bayes H
Ri,k = Ci,J,k _Ci,l—i,k , for 1> (32)

as well as the corresponding total reserve

|
RTBO:gT,Sk = Z Ci‘?Ja,y;S - Z Ci,l—i,k , for i >J (33)

i=J+1 i=J+1

Tables (4) and (5) show the development factor estimates for Ff,? Y% and the

R Bayes

reserves together with their prediction errors. An initial burn-in

sample of 10,000 iterations was used. The results of these observations were
discarded, to remove any effect from the initial conditions and allow the
simulations to converge. Then further 50,000 simulations for each distributional
assumption was run to reach the final results.
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Table 4. Development factors for Fj K

Bayes

Development year j

Development factor for each line of
business k

i
FjBlayes
A
A
A

Bayes
Fj )5

Table 5. Reserves and prediction errors for the Bayesian model

Business k=0

0 1 2 4 5 6 7 8 9
2268 1233 0982 1.025 1.011 0981 0963 1.003 0.996 1.000
2.134  1.094 1.032 1.002 0998 1.000 1.014 0.999 1.000 0.990
2.189 1.138 1.037 1.042 1.003 1.000 0.999 1.002 1.000 1.000
2.108 1.070 1.054 1.013 1.004 1.014 0996 0.995 1.000 1.000
1931 1.114 1.018 0995 1.002 0997 0.999 0.997 1.002 1.000
2997 1.191 1.147 1.006 1.000 0979 0996 1.000 1.000 1.004

Business k=1

Business k =2

Bayes

Business k =3

Business k=4

Business k=5

= sd R sd RY sd  R¥™ sd  RY® sd R¥  sd
0.00 1.01 -8.98 29.54 0.00 1.25 0.00 2.95 0.00 1.50 0.62 3.00
-6.70 29.51 -10.52 31.76 0.01 1.93 -0.01 2.00 4.08 12.49 0.44 2.55
-5.36 68.41 -12.55 3410 4.36 11.97 -3432  70.02 -3.29 25.67 0.79 3.43
-25.05  116.00 | 3.31 59.46 0.90 20.67 -33.62  89.56 -3.49 63.11 0.00 4.28
-32.60  125.10 | 6.56 87.45 1.29 27.02 14.32 250.10 | -4.83 53.29 -7.87 23.60
-24.80 123.10 | 1.37 74.11 4.11 24.41 28.59 270.80 | -3.01 56.66 -5.10 18.87
-8.42 107.30 | 1.98 57.53 43.08 168.80 | 24.43 160.90 | -14.08  119.40 | -2.64 16.07
-16.55 120.20 | 14.20 56.23 72.32 189.80 | 138.50 256.40 | 8.48 113.30 | 18.12 38.17
76.48 256.30 | 54.87 9291 144.10  185.10 | 225.30 352.80 | 155.50 199.40 | 16.56 692.70
528.80 64530 | 187.10 399.20 | 431.90 233.40 | 652.00 559.80 | 354.80 286.30 | 8.49 1347.0
485.80  758.80 | 237.40 454.60 | 702.10 409.20 | 1015.0 865.40 | 49420 412.00 | 29.40 1513.0

66




J.R.Sanchez and J.L.Vilar — Anales2011/51-74

Conclusions

An important generalization in loss reserves modeling consists in
considering more information furnished by different lines of business.
Looking this way, we can develop a credibility formula which contains the
CLM case when o=1 and credibility mixtures otherwise. Moreover, the
advantage of Bayesian approach is that we can obtain a full predictive
distribution, rather than just the first and second moments as in Credibility
and CL method. Plot (1) shows the posterior distribution for the collective
risk and plot (2) the individual ones.

Table (6) shows on the one hand the reserves estimates when & =1 (non-
informative prior); on the other, the MSE of prediction for each method. The
results show how the use of non-informative priors in Bayesian analysis
leads close reserves estimates as the MLE, when fitting the same model
structure over the mean. For our example the Mack’s model has the smallest
error predictor. However, this model does not express the idea of combining
different lines of business as the Credibility and Bayesian models do. For
both models the MSE of prediction are similar. Therefore, both models
should be good to adjust the claim amounts. Finally, we can observe in the
Bayesian model a small difference in the line of business 6. The reason is
that there are small cumulative claims respects the other lines of business
that affect the estimations of the reserves. To solve this problem we could
remove the last line of business in order to make the same analysis. However
the objective of this article was to compare the credibility and the Bayesian
model with the same data information.

Table 6. Reserves for Credibility, Chain-ladder and Bayesian model

t Reserves MSE

k Cred MCL Bayes Cred MCL | Bayes

0 504 486 486 498 510 759

1 244 235 237 402 424 455

2 517 701 702 520 565 409

3 899 1029 1,015 729 765 865

4 621 495 494 584 593 412

5 25 40 29 143 163 1513
Rra | 2810 2987 2964 1254.2 1312.6 | 2049.0
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Plot 1. Predictive distribution for the collective reserve
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Plot 2. Predictive distribution for the individual reserve
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Appendix A. Cumulative claims from different lines of business.

Triangle k=0
i/j 0 1
0 118 487
1 124 657
2 556 2204
3 1646 2351
4 317 886
5 242 919
6 203 612
7 492 1405
8 321 1149
9 609 1109
10 492 1627
11 397 793
12 523 1098
14 1786 2951
14 241 465
15 327 622
16 275 520
17 89 327
18 295 301
19 151 406
20 315

Triangle k=1
i/j 0 1
0 268 456

1 268 520
2 385 968
3 251 742
4 456 905
S 477 1286
6 405 999
7 443 932
8 477 1046
9 581 1146
10 401 997
11 474 778

2
1232
863
3494
2492
890
1218
622
1685
1728
1283
1622
868
1475
3370
536
577
529
378
396

485
577
1017
795
1162
1376
1172
952
1336
1316
1229
939

3
1266
890
2998
2507
890
1224
639
1668
1863
1294
1672
889
1489
3029
596
583
529
382

483
579
1019
931
1164
1376
1196
965
1362
1362
1248
1321

4
1266
914
2983
2612
950
1229
667
1753
1877
1253
1672
964
1489
3211
652
583
541

483
579
1019
931
1164
1373
1196
984
1375
1391
1281
1366

5
1397
916
3018
2612
990
1249
647
1742
1877
1255
1672
964
1489
3289
652
583

6
1397
941
2458
2608
990
1249
647
1804
1877
1255
1672
964
1489
3325
652

Development Year

7
1397
941
2458
1755
990
1249
647
1804
1877
1255
1672
964
1489
3325

Development Year

5

483
579
1019
931
1164
1373
1210
992
1375
1391
1284
1392

70

6

483

579

1019
931

1164
1373
1210
1012
1375
1391
1264
1392

7

483

579

1019
931

1164
1373
1210
1012
1375
1391
1264
1392

8
1492
941
2470
1755
990
1249
647
1804
1877
1255
1621
964
1489

483

579

1019
931

1191
1373
1210
1012
1375
1391
1264
1392

9
1492
865
2470
1755
990
1249
647
1804
1877
1255
1621
964

483

579

1019
931

1191
1373
1210
1012
1375
1391
1264
1392

10
1492
865
2470
1755
990
1249
647
1804
1877
1255
1621

10

483

579

1019
931

1191
1373
1210
1012
1375
1391
1264
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12 649 1420 1707 1709

14 911 1935 2304 2307

14 508 1054 1101 1071

15 389 790 868 909

16 373 998 1091 1155

17 276 853 932 948

18 465 820 859

19 343 622

20 254

Triangle k =2

i/j 0 1 2 3
0 92 442 541 541
1 451 1077 1085 1178
2 404 717 834 849
3 203 572 813 875
4 352 834 1048 1072
S 504 1246 1272 1353
6 509 1008 1061 1061
7229 580 630 670
8 324 815 871 859
9 508 805 906 969
10 354 641 833 842
11 431 847 854 915
12 205 830 978 1034
14 522 1134 1064 1202
14 567 925 915 957
15 1238 1924 2034 1897
16 355 1003 1137 1164
17 312 680 682 686
18 246 352 418
19 9 418
20 130

1709 1709 1709 1638 1638

2309 2309 2309 2362

1071 1071 1071

1569 1569

1201

Development Year

4 5 6 7 8
528 528 528 528 528
1212 1217 1217 1217 1217
849 850 850 850 850
878 910 912 1096 1089
1088 1088 1088 1088 1088
1285 1285 1285 1285 1285
1061 1071 1071 1071 1071
672 672 672 672 672
&7 777 777 777 177
971 971 971 971 971
842 842 842 842 842
918 918 918 918 918
1048 1048 1048 1048 1048
1202 1210 1210 1210
953 953 953
1897 1897
1196

71

528
1217
850
1089
1088
1285
1071
672
777
971
842
918

10

528
1217
850
986
1088
1285
1071
672
777
971
842
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Triangle k =3
i’lj 0 1
0 330 1022
1 327 873
2 304 1137
3 426 1289
4 750 2158
5 761 2164
6 1119 2666
7 917 2458
8 905 2014
9 1761 2990
10 824 2063
11 4364 6630
12 493 1587
14 4092 7710
14 1733 3647
15 1261 2658
16 1517 3054
17 778 1212
18 727 1661
19 561 1486
20 459
Triangle k=4

i’lj 0 1
0 486 964
1 867 1669
2 1285 1925
3 395 994
4 802 1468
5 966 1967
6 759 1766
7 1136 2139
8 1467 2243
9 1309 2521
10 877 2170

2

1066
1057
1234
1418
2910
2446
2946
2892
2459
3235
2378
6850
1780
6596
3699
3063
3335
1247
1816

1057
1643
2204
1309
1776
2628
1922
2219
2553
2660
2341

3

1086
1076
1460
1574
3071
2570
3008
3502
2466
3795
2368
6885
1794
7201
3780
3036
3438
1215

1106
1717
2488
1442
1823
2743
1863
1921
2598
2640
2420

Development Year

4

1094
1082
1475
1578
3213
2578
3021
3629
2554
3816
2384
6923
1838
7292
3773
3093
3438

5

1094
1082
1588
1634
3199
2558
3022
3664
2554
3841
2368
6923
1838
7292
3773
3095

6

1094
1082
1586
2250
3052
2558
3019
3887
2554
3842
2373
6923
1838
7292
3733

7

1094
1082
1586
2044
3052
2558
3019
3867
2540
3860
2373
6923
1865
7292

Development Year

4

1130
1720
2507
1467
1827
2294
1886
1931
2598
2639
2516

72

5

1130
1724
2509
1467
1832
2338
1886
1944
2598
2641
2516

6

1138
1724
2510
1477
1833
2358
1886
1947
2598
2659
2431

7

1131
1724
2510
1477
1833
2358
1886
1867
2598
2659
2431

8

1094
1082
1586
2044
3052
2558
3019
3697
2540
3860
2373
6923
1865

1131
1724
2436
1477
1833
2358
1886
1867
2598
2659
2431

9

1094
1082
1586
2044
3052
2558
3019
3697
2540
3860
2373
6923

1131
1724
2436
1477
1833
2358
1886
1867
2598
2659
2468

10

1094
1082
1586
2044
3052
2558
3019
3697
2540
3860
2373

10

1131
1724
2436
1477
1833
2358
1886
1867
2598
2659
2468
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11 1004 1963 2260 2226 2226 2215 2215 2059 2059 2059
12 1351 2579 2736 2759 2760 2766 2688 2737 2737

14 906 2341 2667 2655 2655 2650 2650 2824

14 563 1450 1575 1603 1654 1654 1675

15 417 1006 1034 1049 1049 1050

16 322 836 1046 1123 1143

17 1047 1656 1689 1779

18 497 843 877

19 1021 1237

20 302

Triangle k =5 Development Year
i’/j O 1 2 3 4 5 6 7 8 9 10

0 18 64 64 64 64 64 64 64 64 64 64

1 20 73 103 153 155 155 155 155 155 155 155
2 20 70 318 328 328 328 328 328 328 328 328
3 88 133 133 133 133 133 133 133 133 133 133
4 3 180 214 214 215 215 215 215 215 215 215
5 11 79 8 8 81 81 81 81 81 81 8l

6 17 66 105 172 172 172 188 188 188 188 199
7 73 216 218 218 218 218 218 218 218 218 218
8 48 213 253 386 400 400 317 304 304 304 304
9 98 153 153 158 158 158 158 158 158 158 158
10 38 529 557 632 639 639 639 639 639 639 639
11 42 140 141 141 141 141 141 141 141 141

12 64 95 95 102 102 102 102 102 102

14 57 144 169 178 178 178 178 178

14 g5 178 188 186 186 186 186

15 212 341 357 371 371 371

16 56 152 187 246 246

17 25 44 103 178

18 19 137 140

19 25 45

20 7
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