

UNIVERSITY CARLOS III OF MADRID

Master in Actuarial Science and Quantitative Finance

Comparative performance analysis between Gradient

Boosting models and GLMs for non-life pricing

Viktor Martínez de Lizarduy

Kostornichenko

with student ID

100417251

by

and with the supervision of

José Miguel Rodríguez-

Pardo del Castillo

 and

Jesús Simón del Potro

June 2021

II

Esta tesis es propiedad del autor. No está permitida la
reproducción total o parcial de este documento sin mencionar
su fuente. El contenido de este documento es de exclusiva
responsabilidad del autor, quien declara que no se ha incurrido
en plagio y que la totalidad de referencias a otros autores han
sido expresadas en el texto.

En caso de obtener una calificación igual o superior a 9.0
(Sobresaliente), autorizo la publicación de este trabajo en el
centro de Documentación de la Fundación Mapfre.

✓ Sí, autorizo a su publicación.
 No, desestimo su publicación.

III

Abstract
Modelling the behavior of risks is one of the most fundamental pillars in the insurance

business throughout all its branches. Actuarial practitioners have always been interested

in finding the best statistical tools to capture the nature of the risks they undertake from

their clients, and in the last decades these techniques have thrived through the

implementation and expansion of Machine Learning, both to process and handle large

amounts of data, as well as to carry out advanced computations.

Specifically, and as the purpose of this document, we will be focusing on the Gradient

Boosting algorithms from the sub-family of ensemble methods used for regression to

predict and model basic pricing variables such as frequency and claim severities, and

compare their predictive and pricing capabilities with classical Generalized Linear

Models.

In our study case of a French insurance motor portfolio, we found that Gradient

Boosting models have a stronger predictive performance and a higher pricing ability to

adjust the premiums to both high risk and low risk profiles. And finally, we conclude that

these models can be used to support and improve GLMs and their pricing results as

Machine Learning continues to settle in the actuarial modeling paradigm.

Key words: Data Science, Machine Learning, Insurance, Pricing, Modeling,

Performance

Resumen

La modelización de riesgos y su comportamiento es una de las ramas fundamentales

del negocio asegurador a lo largo de todas sus ramas. Los actuarios profesionales siempre

han buscado las mejores herramientas estadísticas para capturar la naturaleza de los

riesgos suscritos a sus clientes, y en las últimas décadas éstas han prosperado gracias a la

implementación y expansión de las técnicas de Machine Learning, tanto para procesar y

gestionar grandes cantidades de datos como para desarrollar tareas de computación

avanzada.

En concreto, y como propósito de este documento, nos centraremos en los algoritmos

de Gradient Boosting de la subfamilia de métodos de ensamble, utilizándolos para la

regresión y predicción de variables de tarificación básicas como frecuencias y

severidades, para comparar sus capacidades predictivas y de tarificación frente a los GLM

tradicionales.

En nuestro estudio sobre una cartera francesa de pólizas de riesgo frente a terceros,

encontramos que los modelos de Gradient Boosting tienen una capacidad predictiva

superior y una mayor habilidad para ajustar las primas a perfiles de alto y bajo riesgo.

Finalmente concluimos que estos modelos pueden ser usados para apoyar y mejorar los

GLMs y sus resultados de tarificación mientras el Machine Learning continúa su

asentamiento en el paradigma de modelización actuarial.

IV

To the family and friends who fueled me with passion, our struggles and dreams have

made us who we are.

V

Table of Contents

Abstract ... III

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Goals of the study ... 2

1.3. Brief description ... 2

1.4. Main findings and conclusions ... 3

2. Literature Review ... 4

2.1. GLMs and Traditional Loss Cost modelling .. 4

2.1.1. The context for GLM applications .. 4

2.1.2. GLMs currently in the industry and in research 7

2.2. Decision Trees and applications ... 8

2.2.1. Classification Trees ... 9

2.2.2. Regression Trees ... 14

2.2.3. Main contributions and drawbacks ... 17

2.3. Ensembles of Trees ... 19

2.3.1. Random sampling through bootstrap .. 19

2.3.2. Bagging Trees and Random Forests.. 20

2.3.3. Boosting Trees... 21

2.3.4. Gradient Boosting Trees and Loss Costing applications 24

3. Case study and data .. 28

3.1. Description of the dataset ... 28

3.2. Exploratory Data Analysis (EDA) .. 30

3.2.1. Claim Counts analysis ... 30

3.2.2. Feature analysis ... 31

3.2.3. Claim Amounts Analysis .. 32

3.2.4. Effect of outliers on average Claim Amounts 35

4. Methodology ... 36

4.1. GLM model fitting for frequencies .. 36

4.1.1. Feature selection and preprocessing .. 36

4.1.2. Frequency parameter significance ... 40

4.1.3. Choosing the optimal Frequency GLM ... 41

VI

4.2. GLM fitting for claim amounts .. 42

4.2.1. Feature selection for claim amounts.. 43

4.2.2. Claim Amount Parameter significance ... 46

4.2.3. Choosing the optimal GLM for claim amounts 47

4.3. GLM pricing machine .. 47

4.3.1. The Pure Premium Analysis table ... 48

4.4. GBM model fitting for frequencies .. 49

4.4.1. Distinctive technical aspects of the LightGBM implementation 49

4.4.2. Response-based encoding for categorical features............................ 50

4.4.3. Basic GBM model fitting for frequencies ... 51

4.4.4. Hyperparameter-tunning for frequencies .. 55

4.5. GBM model fitting for claim amounts. .. 58

4.5.1. Basic GBM model fitting for claim amounts 59

4.5.2. Hyperparameter-tunning for frequencies .. 60

4.6. GBM pricing machine .. 62

5. Performance and results.. 64

5.1. Comparative predictive performance ... 64

5.2. Partial dependency plots ... 65

5.3. Pure premium comparative analysis ... 68

5.3.1. Summary statistics tables .. 69

5.3.2. Comparative scatter plots for predicted premiums 70

6. Conclusions .. 74

7. Bibliography ... 76

7.1. Literary references .. 76

7.2. Software documentation ... 78

Appendix ... 79

A. Parametrization for EDM family member distributions 79

B. Simulated dataset for Decision Tree illustration .. 80

C. GLM and GBM modeling and comparison.. 82

D. Visualizations through ggplot2 in R... 109

VII

List of Figures

Figure 1: Basic scheme of a Decision Tree. ... 9

Figure 2: Claim occurrence for different vehicle ages with density of frequencies of

claim/no claim and bar chart of frequencies yes/no claim ... 12

Figure 3: Classification Decision Tree for simulated dataset ... 12

Figure 4: Regression Decision Tree for simulated dataset ... 15

Figure 5: Regression Tree predicted prob. vs. empirical prob. for Vehicle Age............ 18

Figure 6: Claim counts distribution for different scales ... 30

Figure 7: Features distributions .. 31

Figure 8: Outliers distribution based on selected criteria ... 32

Figure 9: Density plot of Claim Amounts (€) based on available data 33

Figure 10. Average Claim Amounts and number of claim for each car age 35

Figure 11: Empirical Frequency for each unique value of Power 37

Figure 12: Empirical frequency for each group of Driver Age and each Car Age........ 37

Figure 13: Empirical Frequency for Brand and Region features.................................... 38

Figure 14: Empirical Frequency PowerSmpl, BrandSmpl and RegionSmpl 39

Figure 15: Average Claim Amount for each Driver Age and each Car Age.................. 43

Figure 16: Average Claim Amount for Categorical features on simplified versions 44

Figure 17: Frequency feature histogram ... 45

Figure 18: Feature Importance for each predictor .. 52

Figure 19: Value split-counts for DriverAge (left) and DensityS (right) 53

Figure 20: First Decision Tree of the GBM model .. 54

Figure 21: Second Decision Tree of the GBM model .. 55

Figure 22: Feature importance for initial GBM for claim amounts 60

Figure 23: First two and last two stumps from claim amounts GBM 61

Figure 24: Feature importance for tunned GBM for claim amounts 62

Figure 25: PDPs for Fine-tunned frequency GBM model .. 66

Figure 26: PDPs for Fine-tunned severity GBM model ... 67

Figure 27: Comparative scatter plot for pure premium .. 71

Figure 28: Comparative scatter plot for annualized pure premium 71

Figure 29: QQplot for pure premium pricing schemes distributions 72

VIII

List of Tables

Table 1: Simulated dataset of motor insurance claims ... 11

Table 2: Test dataset and predicted values from Decision Tree compared 13

Table 3: Short hyperparameter configuration MSE comparison 16

Table 4: Frequencies for exposure period and risk features in freMTPLfreq dataset 28

Table 5: Claim Amounts .. 29

Table 6: Claim Amounts right tail distribution for a set of values 34

Table 7. Highest Claim Amounts and feature information .. 34

Table 8: First Poisson regression with two predictors .. 40

Table 9: Best Poisson GLM for frequencies .. 42

Table 10: Summary statistics for the Frequency feature .. 45

Table 11: First GLM for Claim Amounts summary table .. 46

Table 12: Best Gamma GLM for claim amounts ... 47

Table 13: Single profile Pure Premium prediction ... 48

Table 14: Premium Analysis Table for GLMs ... 49

Table 15: Categorical Response-based encoding based on feature Brand 50

Table 16: Brand Response-encoding for frequencies and for claim amounts 51

Table 17: Summary table for results of Grid Search .. 57

Table 18: Best performing models from the Grid Search .. 57

Table 19: Stochastic GBM tunning of feature fraction .. 58

Table 20: Alternative GLM for claim amounts .. 59

Table 21: Top three best performing models for claim amounts 60

Table 22. Stochastic GBM for claim amounts tunning .. 61

Table 23: Single profile Pure premium for GLMs and GBM models 62

Table 24: Premium Analysis Table for GBM models .. 63

Table 25: Performance comparison table ... 64

Table 26: Comparative pure premium table ... 68

Table 27: Basic summary statistics for Comparative table .. 69

Table 28: Comparative total aggregated loss statistics ... 70

1

1. Introduction

1.1. Motivation

The insurance industry has grown constantly through the past century, specializing in

as many lines of business as it is possible to imagine. Its aim is to manage the risks that

their clients transfer to them by hands of the formal contract bonding both parties, all of

it in exchange of a pre-established premium. These risks have developed into many

branches in very different fields and environments, such as marine and air transport, legal

defense, business interruption compensation, natural disasters, workforce insure and

many other spheres like the well-known life insurance, health, and pension schemes.

It is thus self-evident that the type and nature of the risks that the insurance company

will have to manage are very particular in each situation, and will most likely be tied to

macro-economic, environmental, legal and political factors driving the behavior, the

potential impact and even the interactions between variables. All these properties make

the insured risk highly dynamic and complex in their effects and in the dependencies

amongst them.

It is for this reason that the insurance industry has been trying, almost since its

inception, to correctly capture and model the behavior of the risks they undertake, in order

to know the extent of the losses they will have to assume to compensate their clients in

accordance with the terms of the policy. And this is the goal that gives birth to the pricing

process in the insurance business.

According to Parodi, P. (2015) the pricing process in any general insurance company

begins with familiarizing with the risk and its nature, taking into account the information

about exposure, cover and past claims. This initial yet fundamental stage is labeled by the

author as the “Risk costing subprocess”.

It is in the context of this essential sub-process that the newest and most sophisticated

modern statistical learning techniques come into play. It might already be well known for

the reader that in the last decades, these methods have thrived in an unprecedented level

by the hand of the Machine Learning tools.

Machine Learning (ML) has extended its implementations in fields such as genetics,

medicine, commerce, astronomy and many other fields, and its eventual incursion into

insurance and actuarial science was almost inevitable. Particularly, and as the focus of

this work, we will be presenting and testing some of the most state-of-the art applications

of the sub-family of Ensemble Techniques of ML algorithms in the risk costing stage of

pricing.

The main benefits of Ensemble Techniques come from their capability to capture

complex dependency structures and interactions among predictor variables (capturing the

full nature of the risk) as well as non-linear relationships, all of it without renouncing to

the interpretability of results.

2

1.2. Goals of the study

The purpose of this work is to dive into some of the most notorious and influential

Machine Learning methods based on Ensembles of Trees implemented in regression for

the purpose of modelling and predicting loss costs in a general insurance environment.

Particularly, we will be implementing Gradient Boosting (GB) algorithms like Stochastic

Gradient Boosting Regression through the open-source software implementation of

LightGBM.

The main advantages of these methods will be assessed in a portfolio of French Motor

Third Party-Liability (TPL) policies and compared with a standard GLM model in order

to illustrate their performance in terms of predictive strength through the Generalization

Error measure and through pure-premium comparison for a Pricing Machine based on

both the GLM and the GBM approaches. The case study and analysis will be performed

in a python-based programming environment using the most up-to-date libraries for ML

modelling and testing.

The interpretability of the GB methods will be shown through Partial Dependency

Plots (PDPs) in order to illustrate the non-linearities that are captured by the model as

well as the potential interactions across features. All of this from a data-driven

perspective, based on the Ensembles of Trees approach.

Our final goal is to prove the suitability of GB algorithms for building comprehensive

data-driven loss costing and pricing structures that are suited for the big-data environment

of present-day insurance companies.

1.3. Brief description

The document’s second chapter will first introduce the literary review surrounding the

standard GML models for pricing and loss costing, giving a brief outline of their

fundamental properties and their fitting process, as well as some of their most important

advantages and disadvantages. Next, we will revise the basics of decision trees and their

algorithmic nature in most ML models alongside some of their applications in insurance

risk modelling. The following sections will deepen into the Ensemble Techniques

revolving around Decision Trees and how these can significantly enhance their predictive

power, presenting along the way the GB algorithms of our interest.

The third chapter will present the case study we will use as a basis for our models

training and comparison. We will describe and explore the main properties of our input

dataset, which belongs to a French Motor Insurance company with a portfolio of TPL

policies.

The fourth chapter will focus on the models fitting methodologies, such as the feature

engineering for both GLM and GB models as well as the necessary hyperparameter

tunning of the latter.

The fifth chapter will show the comparative results and generalization errors between

GLMs and GBM models, along with other comparative analysis for pure premium

3

prediction and the PDPs for our GB models, interpreting the most relevant insights about

the features’ dependency structures.

Finally, the sixth chapter will summarize the conclusions about the comparative

analysis and the main strengths as a formal loss costing/pricing model.

1.4. Main findings and conclusions

In the frequencies model, our fine-tuned GBM model clearly outperforms the

frequency GLM with statistical significance on all parameters, according to the measure

of GE though Poisson Deviance. On the severities side, less features were used as

predictors, with only 5 features on the GLM and 4 on the GBM, yet when comparing the

predictions from both models, in term of Gamma GE the GBM model performed better

as well.

After computing the pure premium in both proposed pricing models, we saw that the

Loss Ratio on the testing portfolio was 97.04% for the GLM pricing machine and 97.14%

for the GBM based scheme. Both models yielded a similar average pure premium

although the latter has a higher dispersion in its premium distribution.

Our QQplot analysis found that in fact the GBM pricing scheme charges higher

premiums to the riskiest profiles compared to the GLMs, while also tending to charge a

lower premium to profiles it deems as less risky.

Also, through Partial Dependency Plots (PDPs) we see that our GBM models of

choice successfully capture non-linear and non-monotonic dependency structures. And in

the severity PDPs we also see that the levels present in them for continuous features can

be easily separated into intervals, in order to bin their values into a categorical feature that

could be used to reinforce the training of GLMs.

The main conclusion is that although as of this day GBM models might not be able to

fully substitute GLMs in the tariff environment common to most general insurance

companies, they can still provide valuable analytical support to both back test and

reinforce GLM training and results, while also enriching the insight obtained for pricing

analytics.

4

2. Literature Review

The next review will explore the theoretical and mathematical basis of the models that

will be applied in our study from a statistical learning perspective. The first stop will

depart from the fundamentals about GLM models and their importance in general

insurance pricing since their first implementation in the 1980s.

2.1. GLMs and Traditional Loss Cost modelling

In the preface of Hastie, T. et al., (2009) we have that nowadays “vast amounts of data

are being generated in many fields, and the statistician’s job is to (…) extract important

patterns and trends, and understand what ‘the data says’”. This is the basic concept of

statistical learning, and GLMs in insurance are just another family of methods designed

to extract information about the undertaken risks and applying the gained knowledge onto

several business stages like:

- Demand: modelling new business and renewals through elasticity curves and

cancellation probabilities.

- Reserving: determining IBNR and IBNER through individual policy information

as well as modeling times until settlement.

- Loss Costing: establish the ‘fair’ quotation to each policy based on their

underlying degree of risk and their general behavior under different scenarios.

Although our work will focus on the latter, there are even more diverse insurance

applications in different lines of business, many of them still in development up to this

date.

2.1.1. The context for GLM applications

The insurance industry and particularly the General Insurance business was severely

constricted before the 1990s across most of developed countries due to strong regulations

regarding pricing and tariff policies. Companies could not reflect their risk costing

analytic models into policy prices, fully capturing the risk profile of each policyholder,

and such scenario limited the spread and development incentives for new statistical tools

and models.

The first applications of GLMs in General Insurance Pricing appeared in the 1980s

and it was not until the second half of the next decade, when the regulations around

pricing and tariff policies were gradually lifted, that GLM could spread throughout the

industry and become the pricing insignia of non-life insurance companies across many

markets.

The key to their success in the industry was that they enabled to generalize the basic

linear regression process to multiple distributions commonly used in actuarial analytics

such as the Poisson, the Binomial, the Gamma or the Inverse Gaussian distributions and,

to modify the basic additive linear relation (1) between response variable and predictors

to set other more convenient relationships (2) like the multiplicative structure that is so

commonly used in pricing/tariff models.

5

𝒀 = 𝑿𝟏 + 𝑿𝟐 + (…) + 𝑿𝒏 (1)

𝑔(𝒀) = 𝑿𝟏 + 𝑿𝟐 + (…) + 𝑿𝒏 (2)

Where 𝒀 is the response variable and 𝑿𝒊 (𝑖 = 1, 2, … , 𝑛) are the predictors. The

function 𝑔(.) is known as the link between response and predictors in the GLM context.

Although the statistical theory is very general and can be used in multiple fashions (using

many different link functions and response distributions), we find that in the actuarial

practice the responses are a very particular set of distributions known as the EDM

(Exponential Dispersion Models) as quoted from Ohlsson, E. & Johansson, B., (2015). In

addition, the most commonly used link is the log-link, which enables the multiplicative

structure:

ln 𝒀 = 𝑿𝟏 + 𝑿𝟐 + (…) + 𝑿𝒏;

𝑌 = 𝑒𝑿𝟏+𝑿𝟐+(…)+𝑿𝒏 = 𝑒𝑋1𝑒𝑋2(…)𝑒𝑋𝑛; (3)

𝑌 = 𝛾1𝛾2(…)𝛾𝑛;

where 𝛾𝑖 = 𝑒𝑋𝑖

However, in the pricing scheme, the predictors are not simply aggregated by the

configuration defined in (3). Instead, they follow a relativity scheme where there is a base

value 𝛾0 that stands for a risk group with homogeneous characteristics, meaning that they

share the same or very similar values across all 𝑿𝒊 predictors. The reference for 𝛾0 is set

to a sub-group with many policies, with the rest of the 𝛾𝑖 acting as relativities with respect

to the base subgroup.

𝑌 = 𝛾0𝛾1𝛾2(…)𝛾𝑛 (4)

This configuration was preferred because it allowed analysts to see the relative effect

of each predictor’s value that differed with respect to the base sub-group. And the

intuitiveness of this approach and the ease of communication have contributed to its use

up until this day.

2.1.1.1. The EDM family

The more basic linear models cannot adapt to the nature of the variables studied in the

insurance business context, the ones that are of interest for actuaries. The reason lies in

the non-normality of variables such as frequencies, severities, aggregated claims or

renewal probabilities. Here the first generalization of GLMs comes into play by fitting a

distribution from the EDM family.

Each of the distributions in group of distributions follows the next scheme:

𝑓𝑌(𝑦) = 𝑒𝑥𝑝 (
𝑦𝜃−𝑎(𝜃)

𝜙 𝜔⁄
) 𝑐(𝑦, 𝜙, 𝜔) (5)

6

Where θ is the location/canonical parameter, ϕ is the dispersion parameter, ω is an

exposure parameter and the cumulant function a(θ)1. The normalizing term 𝑐(𝑦, 𝜙, 𝜔) is

independent from the canonical parameter and is thus not analyzed any further in the

GLM setting.

By the specification of these parameters, we can obtain commonly known

distributions such as the Binomial, Negative Binomial and Poisson in the discrete case,

or Normal, Gamma and Inverse Gaussian for continuous variables2.

Both the GLMs applied in our case study and our GBM models will fit one of the

EDM distributions to our response variables of interest. And the reason these types of

distributions are considered suited for models such as frequencies and severities lie in the

intuitive fact that the former is counted by positive integer values while the latter is

defined for positive real numbers, and in both cases the distributions are remarkably

skewed.

This flexibility alongside the choice of an appropriate link-function are the bedrocks

for GLMs development in insurance applications.

2.1.1.2. Deviance measures and performance

After building an effective GLM in the context of insurance variables we must face

the constant arrival of new information and policies as time passes by. This entails that

our model will be tested by new observations (policies, claims and claim amounts), then

the differences between our predictions in terms of the predicted mean3 𝜇(𝜲𝒊) and the

actual observed value 𝒀𝒊 will need to be measured and assessed in order to determine if

these are due to the natural random process of our variable of interest or if, on the contrary,

our model is failing to capture some of the essential trends and pattern behaviors of our

variable expressed by the 𝜲𝒊 values.

In linear regression, these deviances from the predicted values are measured through

the sum of squared residuals. But in the GLM context we no longer have only gaussian

residuals for our predicted values, so this basic measure will also need to be generalized.

We can do this for the different distributions in the EDM family by means of the Deviance

measures, and these depart from the basic Maximum Likelihood Estimation (MLE)

method used for GLMs fitting. The concept of deviance is important not only in the

context if GLMs but in any statistical learning method used for regression and with a

predictive approach. To fully understand it we need to break down the following

expression:

𝐿𝑅 = 2[𝐿𝑓𝑢𝑙𝑙 − 𝐿𝜇̂] (6)

1 For further mathematical details and properties about the canonical function and other elements from

the EDM family, the reader can refer to section 2.4 of Denuit et al., (2019).
2 The parametrization for the different EDM members can the consulted in Appendix A
3 𝜲𝒊 is a vector of n predictor variables or features. We previously defined them as 𝑿𝟏 + 𝑿𝟐 + (…) + 𝑿𝒏

7

𝐿𝑅 =
2

𝜙
∑ 𝜔𝑖[𝑦𝑖(𝜃𝑖̃ − 𝜃𝑖̂) − 𝑎(𝜃𝑖̃) + 𝑎(𝑛

𝑖=1 𝜃𝑖̂)] (7)

LR represent the Likelihood Ratio, and it is defined as two times the difference

between the log-likelihood of a saturated model (𝐿𝑓𝑢𝑙𝑙) and the current log-likelihood

fitted model 𝐿𝜇̂ representing in our case the GLM model. The saturated model is the one

that perfectly fits the data used to build the model (train data) and it essentially reproduces

the observations 𝑌𝑖 as they are. It makes sense then that this model attains the maximum

possible value of log-likelihood, so it is used as a benchmark to see to what extent is our

model fitting the available data.

 In equation (7) we can see the expanded expression, also known as the scaled

deviance due to the presence of the dispersion parameter 𝜙. Therefore, the Deviance

measure can be written as:

𝐷(𝑦𝑖, 𝜇̂) = 2𝜙[𝐿𝑓𝑢𝑙𝑙 − 𝐿𝜇̂] =

= 2 ∑ 𝜔𝑖[𝑦𝑖(𝜃𝑖̃ − 𝜃𝑖̂) − 𝑎(𝜃𝑖̃) + 𝑎(𝑛
𝑖=1 𝜃𝑖̂)] (8)

The previous expression involves the cumulant function 𝑎(. . .) as well as the

canonical parameter 𝜃𝑖. This means that the formula for the deviance will be particular

for each EDM family member distribution. We will illustrate the exact expression of the

deviance for the distributions used in our models in chapter 5 for Methodology.

2.1.2. GLMs currently in the industry and in research

GLMs have a strong foundation on traditional statistical theory both through

hypothesis testing and confidence intervals (Ohlsson, E. & Johansson, B., 2015). The

latter is used to assess the relativities for sub-groups with little information available for

the policies that are included in them in terms of registered claims.

But not only that, GLMs are a consolidated methodology and procedure in general

insurance companies across the world. Practitioners not only from the pricing and

analytics teams but also from management and strategy use the information from these

models to make key decisions.

The multiplicative structure helps determine tariff strategies in an interpretative

fashion such as when the age is between 18 and 25 for drivers and the model shows a

relativity of plus 30% in frequency and/or severity, therefore knowing the effect of each

characteristic on the main tariff. Additional effects like the gender of the driver, or the

age of the car, will have an added relativity that will help to understand and communicate

the information of decision makers.

Although GLMs help to capture many types of information about the policyholders,

there are still limitations to this, as the deregulation that began in the 90s has not been

absolute, and there are some legal limitations that the actuarial pricing analyst will have

to consider. This often leads to a pricing division between technical rates, using all the

8

information available for analytical purposes, and restricted rates, used for tariffs but

limited by regulations.

In terms of software, GLMs are included in standard open-source libraries in R,

Python, SAS, MATLAB and other widely used programming environments as well as

commercial specialized software provided by consultancy firms.

Most of these resources seek to address the following steps in model training and

testing:

- Feature engineering: after selecting the variables, we have to arrange them

properly before fitting the model. GLMs work well with categorical values and

can even bin into categories numerical and continuous variables, rearranging the

feature space through dummy encoding4.

- Fitting of the model: using MLE by the numerical optimization methods already

coded in the functions.

- Testing the results: both in-sample and out-of-sample Generalization Error as well

as statistical significance of the fitted parameters alongside confidence intervals.

But the research around GLMs in insurance applications is still in constant expansion

as for this date. Some developments are being concentrated on innovative technology-

based lines of business such as the work of Sun, S. et al., (2020) using GLMs for driving

risk assessment using data from Internet of Vehicles technology in the context of Usage-

Based Insurance. Other relatively recent works on GLMs can be found in Davoudi

Kakhki, F. et al., (2018) about worker’s compensation of large claims or the work of Ng,

S. et al., (2019) on GLMs for pricing with deductibles in non-life insurance.

Next, we will move to the algorithmic paradigm of statistical learning through

decision trees, discussing their operating nature and their potential contributions in the

risk costing process.

2.2. Decision Trees and applications

Now we move to a different approach towards predicting our response 𝑦𝑖. In this

section, we will review a broad family of methods that do not have the intention of

replacing the sophistication of GLM for risk costing/tariff analysis by themselves. But

rather, they will contribute with some key advantages that will be thoroughly discussed

latter.

Decision Trees seek to partition the empirical distribution of the features in a way that

each subset corresponds with a specific output or values of the response 𝑦𝑖. Through many

of these partitions, mainly based on conditionals on the values of the features 𝒙𝒊 (one at

a time) and in different stages following a hierarchical top-down structure, we end up

4 We will discuss dummy encoding in the Methodology Chapter and its configuration in the

development of our case study.

9

with cells of observations that are predicted/explained by the conditionals applied to its

features by the Decision Tree.

These models can be applied to Regression or to Classification problems, and

although our focus will be on the former, both of them have valid applications in

insurance. We will review the fundamental properties of each of them in the following

subsections.

2.2.1. Classification Trees

The first type of Decision Tree are the ones that seek to predict the output of a response

that takes a limited set of values, most of the times we will be talking about a few different

values that can go from boolean type yes/no responses to categorical responses such as

blood type, region of origin for a person based on their accent or, the renovation or

cancellation of a policy based on previous behavior pattern.

Figure 1: Basic scheme of a Decision Tree.

Source: own elaboration

The goal of Classification Trees (CDT) is to partition the available data in a way that

the cells of data, more commonly known as leaves or terminal nodes, are homogenous.

Each partition is defined as a decision node, where a specific condition based on one of

the features is applied. The condition is always one of true/false, separating the data into

two splits, those who yielded true to the left and those resulting in false to the right. Then

the same process continues until the tree has reached its maximum depth or no further

improvements in homogeneity can be archived.

To illustrate the basic mechanics, we will first define the data available as the training

data, and the process of building the model as learning from the data.

We depart from a set of {(𝑦𝑖, 𝒙𝒊); 𝑖 = 1, … , 𝑁} available observations of our case

study, where 𝒙𝒊 = {𝑥1𝑖, 𝑥2𝑖, … , 𝑥3𝑖} are the features values for each observation and 𝑦𝑖 is

the value for the response for each observation. From here, the models are traditionally

trained using only a portion of the available observations, commonly using around 70%

or 80% of the available data as a training set, leaving the rest as a test set of observations

used to evaluate the predictive performance of the model.

10

Now, as we mentioned before, the partitions or splits of the training data based on

conditional values of the features will be made by the algorithm of the Decision Tree by

minimizing a measure of impurity. This measure is commonly the Gini Index:

𝐺𝑖 = 1 − ∑ 𝑝𝑖,𝑘
2𝑛

𝑘=1 (9)

Where 𝑝𝑖,𝑘 =
𝐶𝑙𝑎𝑠𝑠 𝑘 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑖

If we are dealing with a portfolio renewal problem with n = 2, we have k = 1 for

renewal and k = 2 for cancellation, while 𝑖 = 1, 2, … , ℬ with ℬ as the total number of

nodes. This is not the only measure for impurity, but is the simplest and most

computationally efficient alternative. Sometimes, the Entropy Index5 is also considered,

though its results are almost identical to the Gini index and its run time tends to be slightly

higher than the latter.

With our impurity target measure we will have trees capable of adapting to our data

excessively well, not only capturing the main trends of the data but also reproducing the

noise in our samples, with leads to the problem of overfitting. To avoid this problem, the

Decision Tree model has several hyperparameters used for limiting the expansion of the

Tree both as restrictions before partitioning (pre-pruning) and after building the tree (post-

pruning). Here are some of examples:

Pre-pruning:

- Maximum Depth: in figure 1 the depth is 2, having two levels of decision nodes

with node 1 in level 1 and nodes 2 and 3 for level 2. This parameter must be set

accordingly with the nature of the problem to limit the expansion of the tree.

- Minimum number of samples at node: if the number of samples is not big enough,

then partitioning again might not render any solid conclusions.

- Minimum number of samples at leaf: if the resulting samples in each of the two

leaves born form the partition at the node are not enough, then evaluating the

classification output for those leaves might not be reliable.

- Maximum number of leaves: similarly, to maximum depth, this parameter intends

to control the expansion of the tree.

Post-pruning:

- Minimal Cost-Complexity Pruning: a method of regularization through a

parameter called alpha used to penalize the excess of complexity of a tree when

some of its splits cannot render a good enough improvement in homogeneity in its

child nodes or child leaves.

Although there are more parameters conditioning the learning of a Decision Tree

model, the ones just mentioned are considered the most important, and will be relevant

5 The Entropy measure for impurity is equal to ∑ −𝑝𝑖,𝑘

𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖,𝑘) and it is included as an optional

argument in mainstream packages such as scikit-learn in Python.

11

latter in our work, particularly in the Methodology chapter when setting the

hyperparameter tunning process, a fundamental step in any Machine Learning model

where the optimal values for these parameters are chosen based on each particular case

study.

2.2.1.1. Example of Classification Tree

We just explained the essentials of Decision Trees and their operating procedure for

classification problems, but it is also convenient to show a practical example of this model

performing and working to provide predictions.

In the following example, we have simulated a dataset of motor insurance policies6

for different vehicles where the response variable 𝑦𝑖 is 1 if there was a claim reported

during the observed period and 0 if there was no claim. The sole feature of the dataset

corresponds to the vehicle age with range from 0 years to 20 years.

Table 1: Simulated dataset of motor insurance claims

Source: own elaboration

 As shown on table 1 we have a total of 3500 simulated policies in a data frame of 2

variables, one of them being the feature used to predict the occurrence of a claim. To

understand why a more common model such as logistic regression cannot fit the data

properly, we must visualize the claim occurrence based on the vehicle age and see the

type of complexity we are dealing with.

In figure 2 we can see both the density of claim occurrence or not occurrence for each

vehicle age as well as a bar plot with frequencies, respectively. Through both plots we

see that ages 0 and 1 corresponding to new vehicles are very prone to reporting claims,

but this tendency reverts for the next years, with vehicles of ages between 2 and 6 having

a much lower propensity. However, the vehicles of ages above 6 years and until ages of

13 have once again a very high propensity for filing claims, which reverts once more for

6 The details on the data and the simulation criteria can be found in Appendix B along with the code in

Python used to arrange the data, fit the model and illustrate the results.

12

ages between 14 and 16, with vehicles of age 17 or higher having a high propensity once

more7.

Figure 2: Claim occurrence for different vehicle ages with density of frequencies of claim/no claim

(left) and bar chart of frequencies yes/no claim (right)

Source: own elaboration

If we were to renew these policies, how would we predict which ones are going to file

a claim and which ones will not? Here the CDT algorithm can construct a tree model that

will help us to determine the classification criteria.

Figure 3: Classification Decision Tree for simulated dataset

Source: own elaboration

With this in mind, we fit a CDT8 to a portion of our policies as our training set, having

80% of our original policies to train the tree. After fitting the model with a maximum

depth of 4 and maximum leaves of 5 we obtain the tree in figure 3.

7 This example was made with the intention of illustrating a complex dependency structure for one

feature, it does not intend to be highly realistic or empirically based, yet it can be a worthy approach to

some real complexities present in insurance data.

8 We used the function DecisionTreeClassifier(…) from scikit-learn, for more information the reader

can refer to Appendix B or to the official documentation (scikit-learn, 2021).

13

The decision nodes can be distinguished from the leaves by the first line inside the

box, corresponding to the condition made for the partition. in this case, we will always

partition based on the vehicle age feature.

the next line of information is the Gini Index for each node/leaf. Note that the lowest

impurities correspond to the leaf nodes. The next two lines give information about the

number of samples/policies in each node/leaf as well as the classification distribution

between Claim and No Claim.

According to the tree, those vehicles of ages9 from 0 to 1; 7 to 12 and 18 to 20 will

fill a claim during the period, while vehicles of ages from 2 to 6 or 13 to 17 will not report

any claims.

Finally, each leaf classifies based on the majority observations, and this criterion will

be used to classify new observations or policies that might be renewed for the next period

as well as new business policies that might enter our portfolio.

In order to test the predictions of our tree, we will use the test set of policies to check

the accuracy of the tree. For this we will compare the predicted claim for the feature

values with the empirical information already available in the test set.

Table 2: Test dataset and predicted values from Decision Tree compared

Source: own elaboration

After checking the accuracy of our predictions in our test set of 700 policies we have

that 86% of the policies performed the way we expected. In practice, this result will have

to be compared with different ML models and at different hyperparameter settings. In our

case study we will address these procedures more carefully, explaining the main methods

used to correctly handle them.

9 The tree is splitting for ages 1.5, 6.5, 12.5 and 17.5; even though the ages are integer values, this is

because the recursive algorithm (CART) used to fit the tree uses standardized binary splits. Further details

about the splitting algorithm will be provided in subsection 2.2.3. about the CART algorithm.

14

2.2.2. Regression Trees

Regression Decision Trees (RDT) seek to predict numerical discrete or continuous

variables such as claim counts of claim severities, respectively. Here the tree will partition

the data in a similar fashion to CDTs, but instead of searching for homogeneous partitions

of the data in terms of a specific value of the response they will try to homogenize the

values in each leaf in a way that they are similar or closely oscillating around a common

mean. This mean will typically be the output of each leaf, and it will be particular and

representative of the Decision Tree prediction for each leaf.

To illustrate some of the mathematical expressions, we will closely follow the

notations from Denuit, M. et al., (2020). The following equation is for the predicted value

of the tree model:

𝜇̂(𝑥𝑖) = ∑ 𝑐𝑡̂𝑡=𝒯 𝐼[𝑥𝑖 ∈ 𝜒𝑡] (10)

Where 𝑐𝑡̂ is the predicted value of the tree for one leaf t from 𝒯 leaves, and the function

𝐼 will ensure that the predicted value corresponds to that of the leaf where 𝑥𝑖 is located.

𝜒𝑖 represents the partition of the feature space obtained through the conditions at each

note until arriving at the leaf, 𝑥𝑖 ∈ 𝜒𝑡 means that the observation’s features match the

conditions to be inside the particular 𝜒𝑡 for leaf 𝑡.

As we have already mentioned, the measure for the homogeneity here is based on how

similar or close are the predicted values 𝑐𝑡̂ with the actual 𝑦𝑖 values for our observations.

The lower the discrepancy or deviance between 𝑦𝑖 and 𝑐𝑡̂ the better is the performance of

our prediction on the data.

In the context of RDT models, the measure for this discrepancy is the Loss Function

𝐿(𝑦𝑖, μ𝑖̂) which is applied trough all observations to obtain the Generalization Error (GE):

𝐸𝑟𝑟̂(μ̂) =
1

𝑁
∑ 𝐿(𝑦𝑖, μ𝑖̂)

𝑁
𝑖=1 (11)

The Loss Function typically used in practice is the Squared Residuals measure, thus

obtaining the GE through the Sum of Squared Residuals (SSR). From here we can already

see that the fitting of RDTs is based on Least Squared Residuals, because we ultimately

seek to minimize 𝐸𝑟𝑟̂(μ̂).

However, our application setting is in the EDM family of distributions, so the Loss

Function we need will correspond to the measure of Deviance.

2.2.2.1. Deviance measures in the context of the EDM family

If we want our regression tree to predict count variables such as claim counts or

frequencies of continuous non-negative variables like claim amounts or severities, then

as in GLMs we will have to use an appropriate measure of deviance for the chosen

distribution for our model. Here we are focused in choosing a support distribution that is

realistic for the response variable at hand.

Recovering equation (8) from our GLMs section we have that the GE is:

15

𝐸𝑟𝑟̂(μ̂) =
𝐷(𝑦𝑖,𝜇̂)

𝑁
 (12)

This measure will be used in our case study for both frequency and severity

predictions. But next, we will have a brief look to an example of RDT using the same

simulated data as in sub-section 2.2.1.1. to compare both results and see the fundamental

difference in approach even for the same case study

2.2.2.2. Example of Regression Tree

Our previously simulated data with Claim Occurrence 1 or 0 and feature Vehicle Age

will now be used in a regression tree that will no longer classify as “Claim” or “No Claim”

but will render a value between 0 and 1, and this can be interpreted as the probability of

occurrence of a Claim during the observed period.

Although our response is not a continuous variable, it is possible to use these models

to obtain predictions based on numeric values of our response. In this case we want to

highlight some key differences with respect to CDT models, and for this purpose we have

fit a RDT maximum depth of 4 and maximum leaves of 5.

In Figure 4 we can see the resulting tree. We can notice that the structure is the same

as for the CDT in the previous section, mainly due to the similar nature of the features

and their effects on the response and the fact that we recycled the hyperparameters.

Figure 4: Regression Decision Tree for simulated dataset

Source: own elaboration

Now the prediction for each leaf corresponds to the predicted value, or the probability

that a claim occurs during the next observed period. And the pattern between the splits is

similar to that of the CDT and the initially inferred propensity of age intervals 0-1, 7-12

and 18-20 being much higher than that of intervals 2-6 and 13-17.

Also, the Mean Squared Error is present in the first line of the leaves, and we can see

how it its significantly lower than that of the decision nodes. Yet in terms of performance

16

of the aggregated model, we must estimate the GE through the MSE to assess its accuracy

using a test set, similar to the classification example.

We have calculated the MSE for our test samples and we obtained a value of 0.1242

which is not very informative unless we compare it with other measures coming from

different ML models or even with trees build based on other hyperparameter

specifications.

Table 3: Short hyperparameter configuration MSE comparison

Source: own elaboration

In Table 3 we can see the results by using a few models with changing values for

maximum depth as well as maximum leaves, where some configurations end with a better

performance on the training set than others. Particularly, we see that the tree with max.

depth ≥ 4 and max. leaves = 6 has the minimum RSE.

This procedure is used in hyperparameter tuning, although in a much more complex

and complete fashion, using other additional hyperparameters in the comparison process.

2.2.2.3. The CART algorithm

We had a brief look to the way a Decision Tree is fitted to data in order to predict a

response variable. In ML, all procedures for fitting and training a model are based on

algorithms, this is, a set of sequential steps arranged to arrive at a specific target or goal,

usually in a repetitive and automated manner and being able to respond to the specific

task on the spot.

The CART algorithm is exactly that, is a sequence of repetitive steps organized under

the criteria of the Decision Tree model. In environments such as Python’s scikit-learn this

algorithm is the standard for training trees by using a binary splitting criterion, where

each decision node can only output two leaves based on the condition applied to the

feature that provides the best gain in information, both in terms of minimum impurity and

minimum MSE/deviance.

However, even though CART tries to find the best possible split at each node,

following the restrictions imposed by the hyperparameters, it does so in a recursive way,

and this has a key practical implication. The algorithms with this type of operating criteria

are called “greedy”, mainly because it only searches for the optimal splits form the top-

down nodes of the tree.

17

This means that in a max depth = 2 tree the best split from the first node plus the best

split nodes from the second level could actually be worse than if we had chosen, let us

say, the second-best split in the first node and then the best splits on second level, meaning

that the resulting impurity/deviance would be less than the one obtained with the standard

CART algorithm. Yet still, we settle for this solution because to find the true optimal tree

is computationally infeasible for most case-studies, unless the dataset is very small.

Although we will use the CART algorithm in our applications, scikit-learn includes

other complementary algorithms like ID3, C4.5 and C5.0. Additional information about

these algorithms can be found in the official scikit-learn documentation.

2.2.3. Main contributions and drawbacks

Decision Trees are methods that come with a set of key advantages:

- They can capture non-linear relationships between features and response.

- They can naturally capture interactions between features, the higher the allowed

depth of the tree, then higher will be the order of interactions between predictors

that we will be able to model.

- They are easy to interpret, which is important in a decision-making environment

where communicating is highly regarded.

- Pre-training procedures like feature engineering can be treated easily, comparing

to other ML models, and missing values are also handled through imputation and

estimation rules.

However, their limitations and disadvantages must also be regarded, as they are the

reason why Decision Trees cannot effectively substitute other methods such as GLMs in

insurance modelling by themselves:

- They a very sensitive to training data, with small modifications in training samples

being able to affect drastically the overall partition and predictions.

- Having the natural tendency to overfit the data, these methods need a careful

hyperparameter tunning to cover this risk, although limiting their expansion and

applying pruning techniques is commonly very helpful for this purpose.

- The lack of smoothness due to the rectangular partition of the feature space.

Though there are smoothing procedures that can be applied over the predictions

of the tree, for predicting continuous variables the jump-like predictions are

commonly not precise enough .

We can visualize in figure 5 the lack of smoothness in one of our examples10 of

RDT by comparing the empirical probability of claim occurrence for each vehicle

age against the predicted probability of our model.

For these reasons we will not be building our case study based solely on Decision

Trees. Instead, we will use Ensembles of Trees that will address many of the drawbacks

of individual trees, providing a solid framework for effective predictive modelling.

10 In the illustration in Figure 5 we see the prediction for the RDT with maximum depth = 4 and

maximum leaves = 6.

18

Figure 5: Regression Tree predicted probability vs. empirical probability for Vehicle Age

Source: own elaboration

However, simple Decision Trees still have applications in particular contexts, even

for insurance. One example is the contribution from Quan, Z. & Valdez, E., (2018), based

on multivariate decision trees for an American local property insurance fund offering

multi-line insurance coverage, the authors finally find “an improvement in prediction

accuracy from that based on simply the univariate trees”.

2.2.3.1. The variance/bias tradeoff

As we were mentioning Decision Trees are very sensitive to training data, and tend to

overfit to it, this leads to a severe risk of poor generalization on unseen data. This is part

of the reason that we carefully select the hyperparameters upon which our model is built,

yet most of the times we sacrifice the capability of the tree to extract information about

the data for its capability for correctly predict o closely predict new instances.

The variance of a ML model is the amount of difference in error of our model with

respect to a testing set, and it will be high when our model has little error for the training

set, because it has adapted very well to it, but when tested in unseen data, the error is

much higher. This phenomenon is handled by managing the bias of our model.

The level of bias can be defined as the extent to which a model is limited on capturing

the true relationship between the predictors and the response. Usually what happens is

that even when our model is complex enough to capture all the elements of the

dependency between predictors and response, and thus having little bias, the testing

results are not satisfying because the model ends up capturing some of the noise in the

data, hindering its ability to predict and increasing its variance. This is why when training

a model, we account for the level of complexity in it in order to avoid overfitting and

control the variance when testing

In Machine Learning, we will seek the optimal tradeoff between variance and bias by

the tunning of our hyperparameters, and if our model cannot produce an acceptable

balance, then we will have to use more sophisticated models with the ability to keep a

low level in bias, and at the same time significantly reduce the variance of our models.

19

 In Decision Trees, we achieve this with the ensemble techniques, and even when we

accomplish our goal in this regard, we usually do it at the cost of the simplicity and

interpretability of individual trees, yet the wide success of these techniques have proven

it to be worthwhile.

2.3. Ensembles of Trees

In order to tackle the main limitations of some relatively “weak” or limited learners

like basic Decision Trees, the concept of ensemble was introduced. An ensemble of

learners uses the information from many different individual learners in order to make an

aggregated prediction about a response.

We can compare it to a counseling of many individuals where each of them gives their

opinion, and we understand that each individual has something to say about the matter

because they have assessed different experiences and perspectives about the topic, yet

their sole opinion might be biased or incomplete, so we aggregate their opinions in order

to make the best and most complete decision.

By referencing to the example from Géron, A., (2019) in Chapter 7, we know that

when throwing a slightly biased coin, we might not obtain the most probable outcome,

yet when throwing the coin thousands of times, the majority outcome will most likely be

the one with the bias in its favor. But the other key idea born from this example is that the

ensemble will only outperform if there is little correlation between the individual learners.

From another perspective, many learners combined can “diversify” away the noise

amongst them. Yet, when these are correlated, the power of diversification greatly

decreases. That is why in many ensemble methods we will add particular randomization

parameters to decrease this correlation.

To strengthen an ensemble, you can either diversify each individual learner (using

different models) or you can diversify the training set on which they are built. In our

work, we deal with the second alternative, because for most of high-performance learners

based on ensembles, it is more feasible to diversify the context upon each learner grows

than try to search for enough methods that are both diverse in nature and in performance.

In the next section we will use an essential method for accomplishing our goal

regarding the training set. This method will be important later on in the construction of

the Stochastic Gradient Boosting algorithm and in the fundamental principles of

AdaBoost as a basis for boosting trees in general.

2.3.1. Random sampling through bootstrap

We pointed out that Decision Trees were very sensitive to the specific training set

they were built upon, with changes in just a few instances being able to modify the whole

structure of the tree. This is why the “opinion” of a single tree is deemed as incomplete

or insufficient in itself in many applications.

However, this is no reason to completely disregard the opinion of a single tree, due to

its advantages in capturing interactions and non-linearities of the data in a flexible way,

20

just like we have already remarked. And because each different layout of the training data

leads to valuable information about the predicted variable, we can compile a big number

of trees built under many different training sets.

The purpose of bootstrap is exactly that, to resample the available instances of a

training set in order to obtain a new training set for our next learner. Following with the

notation of Denuit, M. et al., (2020), if we have a training set 𝒟 = {(𝑦𝑖, 𝑥𝑖); 𝑖 = 1, … , 𝑁}

and do an N sized sampling with replacement then we will have a new training set 𝒟Θ

where Θ is an index vector of the instances from the original training set that were selected

to be part of 𝒟Θ.

But in order to obtain an ensemble of learners from this procedure, we will need to

repeat this procedure 𝛭 times, therefore obtaining 𝒟Θ1
, 𝒟Θ2

, … , 𝒟Θ𝑀
 resampled training

sets. And thus, for each 𝒟Θ𝑖
 with 𝑖 = 1, 2, … , 𝑀 there will be an individual learner,

extracting information from that outlay of instances in a separate manner from the rest.

The main tree-based ensembles that derive from the bootstrap resampling methods are

Bagging Trees and Random Forests. In the next section we will quickly visit their

principals and contributions.

2.3.2. Bagging Trees and Random Forests

In the case of Bagging Trees, we train 𝑀 decision trees for 𝑀 different resampled

training sets. If we quickly revisit out example from section 2.2.2.2. in the application for

regression, then we can extend the example by using the tree with max. depth ≥ 4 and

max. leaves = 6 (the tree with the best performance) and apply the bagging of trees with

the same configuration.

In this case, we have chosen to set 𝑀 = 100 and the resulting MSE was 0.1210

compared to the value of 0.1217 of the individual tree shown in Table 3. We can see there

is indeed and improvement in predictive accuracy.

2.3.2.1. Out-of-sample evaluation

It is a statistical fact that around 37% of all instances are not selected to be part of a

particular training set 𝒟Θ𝑖
 and therefore, the algorithm will not learn from those instances

for building the model. Although this might seem like a potential waste of information, it

is actually very useful to validate the model in the learning stage, because we can evaluate

the performance of our model on those samples to choose hyperparameters or to compare

models before actually using the testing set, which commonly used at the last stage once

the model is fully trained to test the Generalization Error measure.

2.3.2.2. Recent applications in insurance for Random Forests

However, to truly explore the capabilities of ensembles like bagging trees, more

complex application domains are needed. In general, for classification, Bagging trees has

the option of making the prediction based in majority voting, or by averaging the

predicted probabilities. In the case of Regression, we average the result of all individual

learners.

21

Now that we understand the basis of Bagging Trees, it is important you point out their

main limitation, and it is that the resampling of training sets is not enough in itself to

reduce the correlation between trees, and this is because in Bagging, the trees are typically

grown without restrictions, so the tendency of the CART algorithm to building similar

learners leads to “reusing” information across all iterations.

That is why Random Forests come into the scene with an additional randomization

feature that helps to decrease the correlation among individual trees. They do so by

selecting just a portion of all the different features or predictors that are available to match

the response. This hyperparameter can the named as the number of features per tree

(mfpt).

To see an example of insurance applications using Random Forests we can refer to

the study by Hanafy, M. & Ming, R., (2021) where different Machine Learning methods

are used to predict claim occurrence. In this case the authors used methods like Random

Forests, XGBoost, K-Nearest Neighbors, Naïve Bayes or Logistic Regression; all with a

classification application for a binary response, 1 for occurrence, and 0 for no occurrence

of claims.

The authors use data from a Brazilian insurer with over a million of observations and

59 features from which only 35 we used. In the hyper-parameter tunning, the value chosen

for the mfpt was of 28, meaning that this will be the number of randomly selected features

for each tree.

It is also common, in the scikit-learn environment, to use a default value for the mfpt

equal to the root of the total number of features. And for this case we would have that

𝑚𝑓𝑝𝑡 ≈ 6. In any case, this additional randomization feature is part of the reason why

Random Forests are considered one of the most effective ML algorithms in terms of

prediction. In fact, Hanafy, M. & Ming, R., (2021) conclude that this is the best

performing method for the proposed application based on measures like sensitivity,

specificity, precision or AUC.

The strength of Random Forests relies in its ability to keep a low bias, yet at the same

time, to significantly reduce the variance when tested. However, as we mentioned in the

previous section, we do it at the expense of the simple and easy-to-communicate

interpretability of basic trees. However, ensemble methods have resources to handle this

problem, and we will make use of them in our Methodology chapter. These resources are

Partial Dependency Plots and feature importance plots.

2.3.3. Boosting Trees

The ensembles described in the previous section can already perform classification

and regression in an effective manner, providing extremely valuable information to the

analyst about the variables, and their relationship with the response and between

themselves. But there is another approach to ensembles of trees that has proven its worth

over many applications, and it is the well-known boosting family of ensembles .

22

To understand boosting we must take a different outlook to bagging, where all trees

can be built simultaneously without a specific order and all of their predictions are worth

exactly the same. Let us look at the common results from a Decision Tree model, where

we have a prediction μ̂(𝒙𝒊), which differs across the dataset from the actual value 𝑦𝑖 by a

measure expressed in the loss function 𝐿(𝑦𝑖, μ𝑖̂). Here we can extract each particular

difference between pairs 𝑦𝑖 and 𝒙𝒊 by a residual measure expressed as 𝑟𝑖 = 𝑦𝑖 − μ̂(𝒙𝒊),

and this measure will be the most essential element to understand the boosting approach.

The residual 𝑟𝑖 can be interpreted as the part of 𝑦𝑖 that could not be explained or

captured by our model and, by the bias principle, it does not have to be due to noise, but

it could also include trends in the data not yet discovered. The idea of boosting is to work

on the ‘mistakes’ made by previous learners, and in the case of Boosting Trees, we will

try to explain the residuals made on the previous tree by fitting new trees that will aim at

predicting those errors, whether they are mismatches in a classification problem, or in a

regression application, as is our current concern.

One of the common ancestors to Boosting Trees is considered to be the AdaBoost

algorithm. In the next section we will briefly outline its working pattern to better

understand afterwards the purpose of Gradient Boosting Trees.

2.3.3.1. The AdaBoost algorithm

This classification algorithm was first proposed by Freund & Schapire, (1997) and it

can be briefly described as an algorithm that seeks to improve over the mistakes made by

a basic Decision Tree with one decision node (weak learner) by fitting a new tree over a

re-weighted version of the training set that gives a higher weight or importance to the

instances that were misclassified.

This way the algorithm forces the new trees to correctly classify those instances, and

at each iteration it evaluates their predictions, establishing an ‘amount of say’ measure

that will define the final influence for that learner over the aggregated voting process of

the ensemble.

So, the key differences to the Bagging approach are that:

- The order upon which the trees are built is important.

- Each tree has a different ‘amount of say’ in the final classification depending on

its classification performance.

- Each tree is not grown in an unrestricted manner, instead they are restricted to

only one decision node with two terminal nodes or leaves. This is why they are

also known as ‘stumps’.

The fact that we aggregate single-split trees means that we are combining information

from different ‘weak learners’, where each of them extracts a limited but valuable amount

of information. Therefore, when aggregating many weak learners, we get a powerful

result capable of broadly capturing hidden trends in the data.

23

AdaBoost was originally designed to aggregate many types of learners like Decision

Trees, yet for our purposes we will show the basic steps of the algorithm when the weak

learners are tree stumps:

Algorithm 1:

➢ Step 1: Initialize sample weights 𝜔𝑡𝑖 = 1/𝑁

➢ Step 2: for 𝒕 = 𝟏 𝒕𝒐 𝑴:

I. Fit a tree stump to available training set 𝒟𝑡.

II. Compute the weighted error of the stump on the training samples:

𝜀𝑡 =
∑ 𝜔𝑡𝑖𝐼(𝑦𝑖 ≠ 𝜇𝑡̂(𝑥𝑖))𝑚

𝑖=1

∑ 𝜔𝑡𝑖
𝑚
𝑖=1

III. Compute amount-of-say:

𝛼𝑡 = 𝑙𝑛 (
1 − 𝜀𝑡

𝜀𝑡
)

IV. Update weights and normalize:

𝜔(𝑡+1)𝑖 = 𝜔𝑡𝑖 𝑒𝑥𝑝[𝛼𝑡𝐼(𝑦𝑖 ≠ 𝜇𝑡(𝑥𝑖))] × 𝐶

where

𝐶 =
1

∑ 𝜔(𝑡+1)𝑖
𝑁
𝑖=1

end for

➢ Step 3: Compute output: μ̂𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡(𝑥𝑖) = ∑ μ𝑡̂(𝑥𝑖)
𝑀
𝑡=1

In the next section we will visit another fundamental element in the Boosting Trees

learning process, and it will be present in the algorithms discussed ahead.

2.3.3.2. Forward Stagewise Additive Modelling for Boosting Trees

We have already established that in the predictive modeling environment of ML

algorithms the goal is to approximate the function that links the features/predictors to our

response variable, this is:

𝑓(𝑥): 𝒙 ⟶ 𝑦 (13)

We say we approximate the function as 𝑓(𝑥) because the true function is always

unknown in a real-world environment. In a Boosting algorithm, we will build 𝑓(𝑥) based

on many individual weak learners, just like we depicted in the AdaBoost example.

Therefore, we can define the boosting function as (14):

𝑓𝑏𝑜𝑜𝑠𝑡(𝒙)̂ = ∑ β𝑡ℎ(𝒙; 𝒂𝒕)

𝑀

𝑡=1

This is known as Additive Modelling, and in our case the function ℎ(𝑥; 𝑎𝑡) will be a

Decision Tree with restricted growth, so we can define our weak learner as 𝑇(𝒙; 𝒂𝒕)

where 𝒂𝒕 are the set of parameters delimiting the feature space partitions.

24

Also, and coming from the generalization presented for GLMs, we can modify the

relationship between response and predictors form the identity link to a link-function of

choice surrounding the left side of equation (14) by the inverse 𝑔−1(…). Thus, and by

taking the corresponding Loss Function, we arrange the following optimization (15):

𝑎𝑟𝑔𝑚𝑖𝑛{𝛽𝑡;𝒂𝒕}1
𝑀 ∑ 𝐿 (𝑦𝑖, 𝑔−1 (∑ β𝑡𝑇(𝒙𝒊; 𝒂𝒎)

𝑀

𝑡=1

))

𝑁

𝑖=1

In practice, the previous equation is solved through a greedy Forward Stagewise

approach, this means that we will add each learner in a sequential fashion, just like in

basic Decision Trees when optimizing the trees without readjusting the previous steps.

These are the elements of the widely known Forward Stagewise Additive Modelling

(FSAM), a fundamental part of the Boosting Trees algorithms applied in practice. This

procedure guarantees a computationally viable alternative, and the evidence of success of

boosting algorithms among many applications has shown that the potential loss in

optimality is not severe in most cases ,while the final results are still quite remarkable.

In the next section, we will show the basics of the Gradient Boosting algorithm for

regression, as well as some recent applications in insurance loss cost modelling.

2.3.4. Gradient Boosting Trees and Loss Costing applications

Also known as Gradient Boosting Machines (GBMs), this algorithm was fully

developed and presented by Friedman, J., (2001) as a way of applying a FSAM approach

to build a strong and effective learner based in many weak learners, mainly small Decision

Trees.

Gradient Boosting Trees are very complete algorithms both for classification and

regression (GBTC and GBTR respectively) thanks to their computational efficiency and

use of randomization and regularization parameters that decorrelate individual trees and

avoid overfitting. Also, most of their software supports have great capacity for handling

missing values, and the preprocessing of features is not very demanding, making GBM a

very data-adaptative model. Their applications in fields like insurance have been growing

and thriving during the last decade and are expected to continue on that trend on the

foreseeable future.

Now we will detail the steps of the algorithm and explain the role of the main

hyperparameters:

Algorithm 2:

➢ Step 1: From training set 𝒟, initialize first base predictor:

𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛γ ∑ 𝐿(𝑦𝑖 , γ)

𝑁

𝑖=1

25

➢ Step 2: for t = 1 to M:

I. Compute partial residuals:

𝑟𝑖,𝑡 = −
𝜕𝐿(𝑦𝑖 , 𝑓𝑡−1(𝒙𝒊))

𝜕𝑓𝑡−1(𝒙𝒊)
 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑁

II. Fit weak Decision Tree t on 𝑟𝑖,𝑡 values:

𝒂𝒕̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒂𝒕
∑ (𝑟𝑡,𝑖 − 𝑇(𝒙𝒊; 𝒂𝒕))

2
𝑁

𝑖=1

III. Compute output values of the tree for each leaf j in 1, … , 𝒞:

γ𝑗,𝑡̂ = argmi𝑛γ𝑗,𝑡
∑ 𝐿 (𝑦𝑖 , 𝑔−1(𝑓𝑡−1(𝒙𝒊) + γ𝑗,𝑡))

𝒞

𝑗=1

IV. Update 𝑓𝑡(𝒙𝒊) = 𝑓𝑡−1(𝒙𝒊) + υ 𝑇(𝒙𝒊; 𝒂𝒕)

end for

➢ Step 3: Compute output: 𝑔−1(𝑓𝑀(𝒙𝒊)) = μ̂𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐵𝑜𝑜𝑠𝑡(𝒙𝒊)

In the previous algorithm we have γ as the output or prediction from each weak learner

starting from the learner 𝑓0(𝑥), which in practice can be any initial guess according to the

judgment of the practitioner, or it can even be a previous model like a GLM or a basic

linear regression that will be reevaluated against the GBTR or the GBTC in the case of

an initial logistic regression model.

In step 2.I we have the negative gradient, and it represents the partial derivative of the

chosen loss function with respect to the initial prediction γ. This is the basic step to

compute the so-called partial residuals, called ‘partial’ because they do not intend nor

always are the residuals we know as 𝑟𝑖 = 𝑦𝑖 − μ̂(𝒙𝒊). Instead, partial residuals are an

intermediate metric spread across all the iterations of the algorithm from 1 to M, and they

will also depend in the loss function of choice.

The weak learner will be trained by the usual optimization CART algorithm to obtain

all partition parameters 𝑎𝑡. Once we have built the corresponding tree, we will calculate

the output for each leaf by the optimization in step 2.III where we will take into account

the accumulated information in 𝑓𝑡−1(𝒙𝒊) plus the information coming from the newest

tree.

With these outputs, we will be able to add the tree to the function 𝑓𝑡−1(𝒙𝒊) built up to

that moment. However, it is very common in GBM applications that the information

coming from each tree is only added partially, and the proportion to include for the update

is determined by the regularization parameter 𝜐 with range from 0 to 1. The inclusion of

𝜐 as a hyperparameter for our model is called shrinkage, and although a low value can

make computation for the hole model much slower, it can also provide with much

effective results in terms of overall performance.

26

By sequentially repeating the process, we can arrive at out final predictor in step 3.

Although this is the main scheme for GBM algorithms, we can add other randomization

features like the bootstrap resampling without replacement at the begging of each iteration

in step 2. This randomization is done to obtain a new training set 𝒟Θ that will be used to

fit the next tree, and it is used to alleviate the computation process by reducing the

variance of the model thanks to a lower correlation among trees. Its implementation

means we are using Stochastic Gradient Boosting either for regression or for classification

(SGBR and SGBC respectively).

Other hyperparameters like max. depth of individual trees, will define the weakness

of each learner but also their ability to capture interactions between features, this will be

an important tradeoff to consider in the tunning process.

To wrap up, it is important to notice that although interpretability for GBM models

might be lower than that of an individual tree, as it is natural for any ensemble technique,

partial dependency plots and feature importance plots might suffice for this matter.

2.3.4.1. Applications of Gradient Boosting Trees in insurance

The impact of GBM algorithms in insurance modelling is on a growing trend as of

this day. The interest in the actuarial research community keeps growing since some of

the first proposals of Gradient Boosting applications like the one from Guelman, L.,

(2012) where the algorithm is used for loss costing by modelling both frequencies and

severities separately on a dataset from major Canadian insurer.

The author of the previous paper compares the performance of the algorithm with a

GLM by comparing the rates or pure premiums (predicted loss costs) of both models as

a ratio of GBM on GLM. The main conclusion is that “the GLM-loss ratio increases

whenever the GB model would suggest to charge a higher rate relative to the GLM”. The

paper concludes that the behavior of the GLM Loss Ratio to higher rates from the GBM

model shows a better performance of the latter.

The interest in expanding the influence of many ML methods, including GBM

models, has been acknowledged the Society of Actuaries in the survey from Diana, et al.,

(2019) where techniques such as regularization, Decision Trees, Ensembles, Neural Nets

or Multivariate Additive Regression Splines (MARS) are presented in different examples

of insurance applications.

In addition, Gradient Boosting has been innovating its software implementations even

in recent years, and this proves that this type of algorithms still has a room for

improvement and further sophistication. One example is the XGBoost implementation

(Chen & Guestrin, 2016) which is already renowned for being used in ML competitions

like Kaggle. In this software packages, the main goals are to be “efficient, flexible and

portable”.

Another valuable application of GBM is in the context of Claim Reserving, developed

by Ahlgren, M., (2018). In this study, once again, the performance of the GBM model is

27

tested against a classical GLM, yet the most interesting conclusion is that the former

actually has a higher prediction error than the latter. The author points out that the

conclusion may be caused by a lower number of features included in the dataset, with less

complex interactions and non-linearities. As one of the most important conclusion we

have that “the GLM already possesses certain features that make it suitable for claims

reserving without making as many adjustments in the model implementation” in contrast

with the rather more complex “fine tuning” of a GBM model.

The fields inside the actuarial practice are more diverse than the ones just mentioned,

and the variants of GBM models developed for loss costing are expected to grow and gain

sophistication in the next years. One of these new proposals are the model from Su, X. &

Bai, M., (2020) based on a Stochastic Gradient Boosting model that takes into account

the dependency between frequencies and severities. The model is labeled by the authors

as D-FSBoost (Gradient Boosting Frequency-Severity Model).

28

3. Case study and data

The dataset used in our work seeks to reflect the multivariate and bigdata environment

common in insurance companies. Therefore, we have chosen a policy portfolio large

enough to extract statistically significant relationships from, using several features to

predict the behavior of common actuarial response variables.

3.1. Description of the dataset

The data set in question belongs to the CASdatasets repository in the R package11 with

the same name. In the documentation for the referenced package, we find our data in the

freMTPL section as “French Motor Third-Part Liability datasets”. In particular, we will

be using the following datasets described in the documentation:

• freMTPLfreq: a motor third-part liability portfolio comprised of 413,169

policies with a set of risk features along with the observed claims number for

each policy according to the time period or exposure of observation, ranging

from 0 to 1.

• freMTPLsev: contains a total of 16,181 claim amounts for the frequencies

reported in the policies inside the portfolio. The policies are identified by a

Policy ID column in each dataset.

Table 4: Frequencies for exposure period and risk features in freMTPLfreq dataset:

Source: own elaboration based on dataset from (Dutang & Charpentier, 2020)

A similar dataset is included in the same freMTPL section, these are the tables

freMTPL2freq and freMTPL2sev, and they include a different set of features and

observations. However, works like the one from Noll, A. et al., (2015), where different

ML methods like Grandient Boosting and Neural Networks are used for modeling

frequencies and are compared with a Generalized Linear Model. However, in our work

we will focus on the previously described dataset for the modeling process.

11 Check the official documentation in the official web documentation file from (Dutang &

Charpentier, 2020): http://cas.uqam.ca/pub/web/CASdatasets-manual.pdf

http://cas.uqam.ca/pub/web/CASdatasets-manual.pdf

29

We can also give a brief description based on the documentation from (Dutang &

Charpentier, 2020) for each feature included in the datasets before moving on to the

Exploratory Data Analysis (EDA). In the case of freMTPLfreq we have:

- PolicyID: identifies each policy and enables to match with claims in

freMTPLsev.

- ClaimNb: Number of claims for the observed exposure period.

- Exposure: The period of exposure measured in years.

- Power: Categorical value describing the power of the car.

- CarAge: Vehicle age measured in years.

- DriverAge: The age of the driver measured in years (minimum 18 years for

French drivers).

- Brand: Categorical variable arranged in 7 brand groups12.

- Gas: Car gas type, either diesel or regular.

- Region: 10 different regions in France.

- Density: the population density as inhabitants per km2 in the driver’s city of

residence.

These features can be matched to the claims in freMTPLsev, so that they can be used

as predictors for the response variable ClaimAmount. Although the EDA was done

partially in R for variables’ distribution visualization, the data wrangling, preparation and

modeling was performed in Python.

In the next table we can see the result of a joint that matches the freMTPLsev dataset

with the freMTPLfreq table using Policy ID as the join columns. For this we have used

the pandas package with the function merge(). The table shows the first 10 claim

amounts:

Table 5: Claim Amounts

Source: own elaboration based on dataset from (Dutang & Charpentier, 2020)

Note that we have dropped the variable ‘Exposure’ originally from the frequencies

table. This is because claim amounts occur following the number of claims, and their

distribution is not directly affected by the length of the exposure period. However, as we

12 See the exact description of each categorical value in Dutang & Charpentier, (2020).

30

have just mentioned, the number of claims can have a dependency with the amounts for

an equal exposure.

The independency between frequencies and severities has been a common assumption

through many actuarial analysis settings, but in practice it can be necessary to relax this

assumption to account for cases when drivers with higher frequency tend to have many

small-amount claims, this can be due to several environmental or behavioral factors that

could then be mapped into a series of features that could enable the modelling of this

relationship.

Some proposals like the one from Garrido, J. et al., (2016) is to use a conditional

approach where the claim counts are modeled through Poisson regression, while claims

are modelled by a log-link GLM with the claim counts as an additional predictor variable.

This way the authors obtain a multiplicative structure for the pure premium where the

dependency between frequencies and severities is accounted by an implicit correction

factor, both convenient and easy to interpret for the analyst.

For our modelling applications a similar approach will be taken, by using as an

additional predictor for the freMTPLsev table labeled ‘Frequency’ that will be defined as

the ratio between the columns ‘ClaimNb’ and ‘Exposure’. This way we emulate an

empirical estimate of the frequency for each policy that filed at least one claim, and this

estimate can be used as a means to penalize those policies in case of renewal, similar to a

bonus-malus system.

3.2. Exploratory Data Analysis (EDA)

3.2.1. Claim Counts analysis

The first stage of our EDA will be to visualize the data contained in both of our dataset

tables. We will first start by visualizing our first response, claim counts or ‘ClaimNb’, in

our dataset freMTPLfreq. In the fitted models, we intend to assume a Poisson distribution

for the claim counts, but it is important to contrast this hypothesis with the data.

Figure 6: Claim counts distribution for different scales

Source: own elaboration

31

In our first depiction in Figure 6 we see a linear scaling for the claim counts, but the

overwhelming proportion for 0 is an obstacle to fully appreciating the presence of higher

claim counts, so the log scale helps to see the proportions for each value of ‘ClaimNb’.

While ‘ClaimNb’ is 0 in roughly 400,000 policies, the number of observations with

just 1 claim reported are around 14,000. From here the number of policies with 2 claims

drops to less than a thousand, while 3 claims are as infrequent as just in 28 policies. And

the maximum value of 4 claims reported is only present in a few observations out of the

whole portfolio.

Now we must assess if a Poisson assumption for the distribution is reasonable, and

for that purpose we compute the mean and the variance based on the data and we obtain

a value of 0.03916 for the mean and a value of 0.04164 for the variance. These values

being roughly similar is an indication that there are no obvious signs of overdispersion in

the count distribution, so the assumption can be maintained.

3.2.2. Feature analysis

In the next figure we will show a plotting of the distributions for the different features

included in freMTPLfreq. We have in total 7 predictor features plus the exposure, with a

total of 4 categorical variables and 4 numeric variables.

Figure 7: Features distributions

Source: own elaboration

32

Features like CarAge have outlier values, so it is important to assess the most extreme

values of the distribution and make the decision about excluding them or not based on a

specific threshold. In this case, we decided to eliminate all policies with CarAge above

50 years, which led to a deletion of 82 Policies and 3 Claim Amounts. We performed a

similar procedure on DriverAge equal to 99 years, this time eliminating 59 additional

Policies with also additional 3 Claim Amounts. The final row count for freMTPLfreq is

413,028 observed Policies and 16,175 reported claims in freMTPLsev.

Figure 8: Outliers distribution based on selected criteria

Source: own elaboration

We can see that the presence of Policies for CarAge > 50 years is residual, while for

DriverAge we decided to keep values up to 98 years, only deleting the cap at 99 years

due to the sudden peak will respect to the immediately previous values, leading us to think

these might be miss imputations, because otherwise we would expect a slow but steady

decease in counts as DriverAge value increases.

Finally, we must address the feature ‘Density’, which has a distribution concentrated

mostly on low values. However, there are concentrations on value ranges that are

separated by far from the initial concentration, as we could see in the bottom right plot in

figure 7. To use this variable in our models, we have considered proposals such as to

transform the feature into a discrete categorical one with ranges of values in each

category, as well as applying a log-scale, but our initial strategy will be to re-scale it to

thousands of inhabitants per 𝑘𝑚2, calling this new version ‘DensityS’.

3.2.3. Claim Amounts Analysis

The next brief description should be about the available data about claims, which are

exactly 16,181 claim amounts, yet after applying the previous feature preprocessing, we

are left with 16,175 amounts.

In the next figure we will show the aggregated distribution of the claims amounts (we

will assume that the amounts are measured in euros €). Particularly, we will see how the

distribution is highly asymmetric and right skewed. The purpose of the modelling for

severities is to predict the behavior of this response, and in the case of models like GLMs

33

we have suitable alternatives for its modeling and prediction. Given that the variable is,

in nature, non-negative in values and continuous, we need a regression support for such

properties, and the Gamma regression is one of the most known alternatives.

In figure 9 we can observe a shortened version of the density distribution for our

variable, and at a first glance it does not seem to match the shape of a Gamma distribution.

Yet now we are working at an aggregated level, for the claims reported in the global

portfolio, which is heterogeneous in risk nature amongst the policies they represent.

Therefore, the overdispersion of the risk in many risk classes is something common and

natural in insurance portfolios, that is why in many application GLMs perform an implicit

risk class classification where each resulting group tends to have a more homogenous

profile based on the features used to train the model.

Figure 9: Density plot of Claim Amounts (€) based on available data

Source: own elaboration

In the previous figure we have only shown a limited domain for the Claim Amounts

registered in freMTPLsev. Specifically, we have established a range from 0€ to 4,000€ to

show in the plot, because as a matter of fact, the highest registered claims exceed by far

the mean or mode values. This is the case of long tailed distributions, very common in

actuarial practice and modelling.

Now we can obtain information about the distribution of Claim Amounts, and we do

so by checking what proportion of claims out of the whole claims record are above a

specific threshold.

We used table 6 to summarize this information, and now we know that over a 5% of

all claims were not plotted in figure 9. We also know that there are 24 amounts above

100,000€ in value, where we could have expected that the observed amounts would

decrease to extinction with values not much higher than the latter.

34

However, as it is common in long-tailed distributions, the last values in our tail are

again much higher than our last threshold, given that we have observed two amounts

higher than a million €.

Table 6: Claim Amounts right tail distribution for a set of values

Source: own elaboration

In practice, such claims exist as the so called ‘catastrophic’ events. This name is not

only representative of a massive event of environmental origins, but it revolves around

many circumstances converging at the same place and time and having an exponentially

augmented effect on the final response.

The presence of such amounts must be carefully considered by the actuarial analyst

because these can be considered as outliers in the general data and if not treated properly,

they can severely affect the overall modelling process. Another way of visualizing the

highest amounts is by ranking the corresponding policies, similar to our representation in

table 7.

Table 7. Highest Claim Amounts and feature information

Source: own elaboration

35

To obtain the representation in table 7 we sorted the Claims information table by the

ClaimAmount variable in descending order, so that the first row shown corresponds to

the highest claim and so on. We will assume that the highest observed amounts are

legitimate, and not an imputation error on the IT level of the company, as this would also

have to be double-checked in practice.

3.2.4. Effect of outliers on average Claim Amounts

For us to have a visual idea on how an extreme claim amount can affect the

dependency between features and response, we have elaborated a plot representing the

average amount for each CarAge value. Figure 10 shows a bar plot for the average claim

and a dotted line giving the number of claims reported, both for each car age group.

Figure 10. Average Claim Amounts and number of claim for each car age

Source: own elaboration

The immediate first aspect of the plot that calls our attention are the two spikes at ages

13 and 21. If we recall the results in table 7 then we will realize that the two highest claims

were both for a policy of 𝐶𝑎𝑟𝐴𝑔𝑒 = 13, and this apparent coincidence is enough to sky-

rocket the average claim value in that age. This can be considered a problem because we

cannot know if the car age 13 is truly riskier or this is just a case of random noise. We see

now how only 2 extreme values can affect the average estimate for an age with relatively

high number of claims of over 600, in this case making the result more than three times

higher than that of neighbor car ages.

Something similar happens with 𝐶𝑎𝑟𝐴𝑔𝑒 = 21, although here the number of claims

if much lower, with only 42 reported claims. This makes the average value much more

sensitive to extreme values, and in this case, the Claim Amount causing the spike is

ranked 12th out of all claims, amounting to a total of 182,568€.

All these aspects will be important in order to determine the filtering threshold used

to rule out extreme values or outliers previous to modelling claims.

36

4. Methodology

In our methodology chapter we will dive into the modelling criteria and training

procedures for our selected models. We will begin by preparing our data for the GLM

training of both frequencies and severities, rearranging the features and interpreting the

coefficient results, statistical significance and relativities.

After comparing different configurations for our GLMs and selecting the most

appropriate ones, we will focus on the training and tunning of our Gradient Boosting

methods, where we will consider different hyperparameters, their added value into the

modeling process and their basic interpretation.

Some essential differences in the modeling approach between GLMs and GBMs will

be considered along the way, and these will set up some of the conclusions made further

along our work once we start evaluating the performance of each model and their

strengths and advantages in a corporate-analytical pricing environment.

4.1. GLM model fitting for frequencies

Our main software tool for GLM training, evaluation and interpretation will be the

statsmodels python library. This package is open-source, easily accessible and well

documented, having all the configurations to correctly run our fittings by following our

case study particularities13.

4.1.1. Feature selection and preprocessing

For training our GLM model, we will have to select the features that yield statistically

significant parameters. For this purpose, we have arranged our initially available data for

frequencies as shown in section 3.1. in table 4.

Variables such as DriverAge, CarAge or Density will be kept as continuous variables,

while the four categorical features (Power, Brand, Gas and Region) will have to be

encoded into a dummy encoding, as we will soon discuss. In this subsection, we will be

exploring in a graphical representation how influential is each categorical variable in the

response, and this will be done by grouping the information in our original tables for

frequencies (table 4) and the one for claim amounts (table 5).

The tool for manipulating and ordering data used across our work is the python library

pandas for data science and analytics14. The DataFrame will be the main structure to

analyze our data across different scenarios and purposes, and some of the most important

13 For more information about the statsmodels library and its main configuration and features the reader

can access the online official documentation of the different functions, parameters, attributes or

performance evaluating methods in: statsmodels v0.13.0.dev0, (2021).

14 The official documentation (McKinney & Pandas Development Team, 2021) for this library provides

all details and insights on each data manipulation function and methodology.

37

pandas functions used will be mentioned, although for further information on our

application and usage for them the reader can refer to our code in Appendix C.

4.1.1.1. Marginal dependency Plots

In figure 11 we can see the result of grouping our frequency table by the Power feature,

which has a total of 11 different categorical values, each of them with a different average

empirical frequency calculated as the ratio of the sum of ClaimNb (number of claims) on

the sum of Exposure, for each of its unique values.

Figure 11: Empirical Frequency for each unique value of Power

Source: own elaboration

We can see clear differences in empirical frequencies ranging from values of 0.06 to

0.08, and this could be enough for us to understand the influence of each category on the

response variable. However, in the plot we also see a dotted orange line indicating the

empirical support in favor of those values coming from the amount of exposure years that

have been observed for each of the categories.

We will obviously trust more the empirical frequency values that are supported by a

large amount of exposure time, and the GLM model will also regard this in the confidence

interval and significance estimations.

Figure 12: Empirical frequency for each group of Driver Age (left) and each Car Age (right)

Source: own elaboration

In figure 12 we can observe the evolution of the empirical frequency as Driver Age

increases. It is clear that the youngest drivers have a frequency much higher that more

mature drivers, although the relationship is not completely monotonic nor perfectly

linear. Something similar happens with the age of the car, the main tendency looks to be

38

decreasing, and values beyond 20 become very rare, so a spike around these ages should

not be of great concern.

Similar information can be extracted from plots on other variables, particularly, we

can see the frequency levels derived from features Brand and Region in figure 13:

Figure 13: Empirical Frequency for Brand (above) and Region (bellow) features

Source: own elaboration

In both of the last depicted categorical features we see one category spanning a much

bigger proportion from the total exposure while many other categories have only a

residual amount of exposure time to back them. In the case of Brand this category is

Renault, Nissan or Citroen, while for Region it will be the Centre region.

An excessive number of categories like the ones we observed in the previous plots

can make more difficult the modelling process due to the lack of significance in their

parameters. This is why it will be important to consider complementary strategies for

processing this type of features in case the significance values in our model are not

satisfying.

4.1.1.2. Categorical feature simplification

 As the data provided from less representative categories tends to be much noisy, we

propose a feature engineering technique that seeks to merge some of the less influential

categories in a more significant unique categorical value that might have better training

properties for our model.

The approach for aggregation can follow not only the least representative values

method, but also one focused on merging categories with almost identical impact on the

response variable, like values “e” and “f” in the Power feature as depicted in figure 11.

Having the two just mentioned criteria, we can apply a quick string value replacement

through pandas’ data frames and generate a new version of our feature:

39

• Power: we went from 12 initial categories to 7 final categories by fusing “e”

and “g” values into an “eg” value15, and we also merged the least

representative “k”, “l”, “m”, “n” and “o” values into a “klmno” value.

• Brand: from the original 7 categories we move to 5 by fusing “RNC” and “J-

{N}/k” into “RNC or J-{N}/k”, as well as “MChB” and “OGmF” into “MChB

or OGmF”.

• Region: from the 10 initial categories we ended up with 7 by combining “Br”,

“BN” and “HN” into “BrBNHN” and also “L” and “NPdC” into “LNPdC”.

This simplification could be carried even further depending on the application, but for

our purposes it is more than enough. The new versions of the features where branded as

PowerSmpl, BrandSmpl, and RegionSmpl and their marginal dependency plots can the

seen in the next figure:

Figure 14: Empirical Frequency PowerSmpl, BrandSmpl and RegionSmpl

Source: own elaboration

Our main train set will now have a higher number of features, but at each training

process we will only use a portion of these, given that RegionSmpl might be chosen in

replacement of Region and so on.

15 The reason for merging “e” with “g” instead of “f” is explained in subsection 4.1.2. on Frequency

parameter significance.

40

4.1.1.3. Establishing the frequency train set

By using a function from scikit-learn16 we perform a split in our current frequency

table. The split is done so that 80% of all observed policies end up in the train set, while

the rest will be put aside for the test set.

We have also fixed a random seed in order to guarantee the reproducibility of our

results. And the train_test_split function as a default argument for stratification of each

value in ClaimNb. As a result, the train set for frequencies has 330,422 instances while

the test set is left with a total of 82,606.

4.1.2. Frequency parameter significance

In this section, we will begin by tying our first GLM for frequencies by using the

statsmodels function GLM(…). Specifically, we will be fitting a Poisson regression

model with weighted observations. This means that we will be required to provide tree

data inputs: the train set containing the features, then the response variable, and finally

the sample weights. But out of all the available features, we will begin by selecting just a

few, and we will specify this through the following model formula:

𝐶𝑙𝑎𝑖𝑚𝑁𝑏 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒

 The Poisson regression configuration has the log-link function by default, which

makes sense given that it is the canonical link. Therefore, after fitting the model we have

the next summary table:

Table 8: First Poisson regression with two predictors

Source: own elaboration

The information in table 8 provides details on the number of observations, the log-

likelihood or the Chi-squared value. The method for fitting is IRLS, meaning “iteratively

reweighted least squares” and the degrees of freedom are 2, corresponding to the two

16 To read the proper documentation for the scikit-learn modules and functions the reader can refer to

the official web documentation (scikit-learn, 2021).

41

additional parameters estimated for out predictors. The measure of deviance will be of

great importance for us, and in order to calculate it for a test set after making predictions,

we have defined our own python function, and we have tested it to obtain the same value

that is shown in the GLM summary table after predicting the fitted values of the train set.

Poisson Deviance (16):

2 ∑ (𝑦𝑖 𝑙𝑛
𝑦𝑖

μ𝑖̂
+ (𝑛𝑖 − 𝑦𝑖))

𝑛

𝑖=1

with 𝑦𝑖 𝑙𝑛 𝑦𝑖 = 0 when 𝑦𝑖 = 0

In the lower section of the table however, we find the information about significance,

and for this model we see a strong significance in all parameters, meaning that their

information is very reliable and the dependence of ClaimNb with CarAge and DriverAge

is well founded.

(𝑃 > |𝑧|) < 0.05 (17)

(𝑃 > |𝑧|) < 0.001 (18)

Our main target will be to select a model where all parameters comply with the first

of the two significance level barriers just depicted. Though a model where most of

parameters comply with the second threshold is also desirable.

4.1.3. Choosing the optimal Frequency GLM

In order to find a model that can extract the maximum amount of information about

the relationship between features and response, we tested several combinations of

predictor variables17, adding each at a time and assessing the significance of the

coefficients.

In our final model, we have used all 7 features from the frequencies table, but two of

the categorical features were used in their simplified version. The feature configuration

used is thus the following:

• CarAge: linear variable.

• DriverAge: linear variable.

• Gas: dummy encoded categorical at Diesel as base.

• PowerSmpl: dummy encoded categorical at d as base

• Brand: dummy encoded categorical at J-{N}/K as base.

• RegionSmpl: dummy encoded categorical at Ce as base.

• DensityS: linear variable.

The resulting model fit will be used to predict the test set frequencies and to evaluate

the Generalization Error through our Poisson Deviance function. This model will also be

further used in the comparison with the Gradient Boosting model, both in terms of

17 More frequency GLMs can be found in our code, presented in Appendix C.

42

predictive accuracy and in terms of final premium. The summary of the fit can be seen in

the next table:

Table 9: Best Poisson GLM for frequencies

Source: own elaboration

We see that our main goal was accomplished in this model training. The majority of

the coefficients are strongly significant (𝑃 > |𝑧| = 0.000) and only a few of them have

a weak statistical significance, like Power “eg” or Region “BrBNHN”.

The model is saved and stored for the performance analysis in Chapter 5.

4.2. GLM fitting for claim amounts

Coming back from the conclusions of section 3.2.4. we are now aware of the impact

of extreme values in claim amounts modelling and we thus decide to proceed with the

following strategy:

• We filter our claims database by taking out outliers, which were set to be all

claim amounts above 10,000€ in order to maintain the modeling process stable

both for the current GLM as well as for the GBM model tested further on.

• In total, 275 claim amounts where dropped, representing 1.70% of the initial

dataset. All claims coming from real and verified compensations of high

magnitude can be modelled separately based on an extreme-value-theory

43

setting where reinsurance can be involved, working as an additional loading

to the pure premium that will be calculated in our work.

• Additionally, and in order to keep the matching integrity between datasets, the

frequency table was preprocessed before the training of our first model for

frequencies18.

• Finally, we are left with a total of 15,906 claims, and after applying the filter

discussed in section 3.2.2. we end up with 15,900 claims ready for modelling.

4.2.1. Feature selection for claim amounts

The claim amounts also have marginal dependencies across features, and here we will

depict some of them. First on figure 15 we have the plots for DriverAge and CarAge, and

here we can already see some differences with their equivalent for frequencies in figure

12.

Figure 15: Average Claim Amount for each Driver Age (left) and each Car Age (right)

 Source: own elaboration

From both figures it is already evident that in features like DriverAge the linear

tendency is much less evident, and the higher value for bars between ages 18, 24 is less

evident and is also supported by less data, and the same happens for elderly ages. In the

CarAge feature the trend is more reliable, although for both variables it will be important

to contrast this with the significance values of our trained GLMs.

For categorical features, the dependencies will be even less evident when plotting, in

figure 16 we will check the marginal dependencies for Power, Brand and Region, both of

them already in their simplified versions.

The relative differences for many of the categories throughout PowerSmpl is very

small, and this can already give us an idea of the incoming hardships for finding

significance across their parameters. In the case of BrandSmpl and Gas we find a similar

scenario, and in the case of RegionSmpl we have some more noticeable differences.

However, in the end it will be the model training that will decide the significance of their

parameters.

18 The method for taking out these frequencies was based on pandas data frame sub-setting and

indexing, for further details on the correction the reader can refer to our code in Appendix C, close to the

begging in the “Claim Amounts Preprocessing” section.

44

Figure 16: Average Claim Amount for Categorical features on simplified versions

Source: own elaboration

It would be possible to further simplify the categories, into an even lower number of

unique values, but there is risk of information loss in this approach, so we settle for testing

the significance of our different available feature versions.

4.2.1.1. The Frequency feature as a predictor

As we were pointing out in our Case Study chapter, the claims table will use an

additional feature to predict the average amount. This feature will try to reuse the

information from ClaimNb and Exposure, in a way to depict how ‘fast’ the claims were

reported.

45

In a way, the Frequency feature explains how the amount of the claim evolves for

profiles that report more claims in a shorter period of time. It will be a continuous variable

with positive real values, and its distribution can be visualized through the histogram plot

in figure 17.

Figure 17: Frequency feature histogram

Source: own elaboration

There is a clear concentration around values of 1, due to those policies observed

though a full year and having reported just one claim, but then we progressively see

policies that reported one claim in less time or even reported 2 or more claims. The

distribution is highly skewed as it is to be expected when doing a ratio on very low

exposures.

Table 10: Summary statistics for the Frequency feature

Source: own elaboration

In the basic statistics from table 10 we see the effects of the severe skewness in a mean

value of 3.228 against a median value of 1.351. This can be easily explained by the

presence of values like the maximum of 365, and this is obviously caused by a policy that

was observed for just 1 day and filed one claim19.

This feature will be carefully assessed on the results evaluation, because there is a

notorious bias when generalizing to policies that have no reported a claim yet, and to

which we will need to establish a pure premium.

4.2.1.2. Establishing the claim amounts train set

For splitting the available Claims table, we will use the indexed values of PolicyID

from the splitting already performed in the Freqs (frequencies) tables. The idea behind

19 Though the presence of such outliers might worry many analysts, in our model fittings we have

observed that these values do not have a negative impact on the modeling process and the significance of

the parameters. Therefore, no feature preprocessing was performed for this matter.

46

this is to make sure that all claims falling into the Freqs train set are exactly matched in

the Claims train set, and the same for the test sets.

In total, we will have 12,653 claim amounts in our train set, and 3,247 amounts for

testing. The available data for building the model is thus much less than what we had for

frequencies, and even though it is still a substantial number of observed claims, the

implications for significance will be inevitable.

4.2.2. Claim Amount Parameter significance

The first GLM for claim amounts will have just the few basic predictors, and it will

be built under a Gamma regression fitting, using the Gamma deviance as a loss function.

Particularly, the initial formula will be the following:

𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡 ~𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

We train the first model and inspect the summary information in the table shown

below.

Table 11: First GLM for Claim Amounts summary table

Source: own elaboration

Now the information from the marginal plots in the previous figure 15 is corroborated.

We see that despite the solid significance of the CarAge feature, the feature DriverAge is

not significant. The additional feature Frequency has high significance as well, and its

relativity will be > 1, given that the coefficient has a positive value.

 From this point, each of the other available features were introduced, one at a time.

If the coefficients were not statistically significant then the variable was discarded from

the model. The significance criteria will be the same as for the frequencies GLM.

4.2.2.1. Discretization for continuous features through bucketing

Additionally, we arranged a version from DriverAge where we bucketed the values if

this feature in order to obtain a categorical value called DriverAgeB by the next criteria

(19):

47

𝐼𝑓 18 ≤ 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 ≤ 23 𝑡ℎ𝑒𝑛 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒𝐵 = '18 − 23'

𝐼𝑓 24 ≤ 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 ≤ 69 𝑡ℎ𝑒𝑛 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒𝐵 = ′24 − 69′

𝐼𝑓 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 > 70 𝑡ℎ𝑒𝑛 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒𝐵 = ′ + 70′

4.2.3. Choosing the optimal GLM for claim amounts

We give a brief summary of the variables that were not used in the final model due

to their lack of statistical significance:

• Categorical features in their initial versions: Brand, Gas, Power and Region.

• Categorical simplified features: BrandSmpl, PowerSmpl and RegionSmpl.

• Continuous features: DensityS

After fitting the GLM with a total of 6 features, we obtain the information represented

in the summary table:

Table 12: Best Gamma GLM for claim amounts

Source: own elaboration

In this model we have an acceptable statistical significance for our coefficients, even

when DriverAgeB ’18-13’ and ‘70+’ come closer to our first threshold. However, we did

not succeed at including more predictors, due to the lack in significance, so this rather

simple model will be our way of interpreting and predicting the claim amounts. The

formula for the Gamma deviance will be the following (20):

2 ∑ (− 𝑙𝑛
𝑦𝑖

μ𝑖̂
+

𝑦𝑖 − μ𝑖̂

μ𝑖̂
)

𝑛

𝑖=1

4.3. GLM pricing machine

Once we have both of our selected GLMs we can apply them onto new unseen policies

and establish a pure premium by following the basic formula (21):

𝑃𝑢𝑟𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 𝐸[𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] × 𝐸[𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦]

48

And the policies to price will be those from the frequency test set, given that it is a

fairly large amount of instances, with over 82 thousand PolicyID numbers, we can assess

the performance of an aggregated model in a big-data environment typical of insurance

companies.

By using the specific method in statsmodels for fitted GLMs, we can perform both of

our predictions of interest. Here is a random profile selected from the frequency test set

table:

Table 13: Single profile Pure Premium prediction

Source: own elaboration

The profile just depicted was observed for just 3 months, yet we can use the

predictions from the GLMs to establish the predicted frequency for that exposure period

and the expected claim amount. However, in practice, we will be renewing or subscribing

premiums on a yearly basis, so it is not inappropriate to calculate our premium assuming

an Exposure = 1 value. This is why we calculate the Annual Pure Premium in the last

Column, and it is as simple as taking the ratio between the Pure Premium and the

Exposure values, this way we can ‘normalize’ the predictions so that all of our test

policies are projected for a one-year period.

4.3.1. The Pure Premium Analysis table

Once we have all predictions of frequencies, claim amounts, and pure premiums for

our test set, we will need to effectively summarize the information in a way that we can

contrast the predicted values from the observed ones.

We will do this by organizing the available columns in the following two groups:

• Observed information: ClaimNb, Exposure and Aggregated Loss

- The Aggregated Loss column is obtained by matching in a backwards

fashion the information of claim amounts into the frequency tables,

and this is done by summing up all claims coming from each of the

policies, both for all PolicyID values with no reported claims, and for

PolicyID values with several reported claims.

• Predicted information: Pred. Frequency, Pred. Severity, Pure Premium and

Annual Pure Prem.

- The Annual Pure Prem. columns is only here for visual purposes,

because given that the empirical information is conditioned to the

Exposure time of each policy, when comparing the total premiums

49

coming from our GLMs predictions with the aggregated losses we will

need to do so on the same Exposure-scaling.

After arranging the information, we can see some of its entries in the table displayed

bellow:

Table 14: Premium Analysis Table for GLMs

Source: own elaboration

This table will be revisited in Chapter 5 on the section of Comparative Premium

Analysis along with an equivalent table for GBM models.

Right now we have established all the methodological steps for the GLM part of our

case study, and we can move forward with the Gradient Boosting models in a similar

structure but by pointing out some of the most important difference between the two

modelling approaches.

4.4. GBM model fitting for frequencies

As we have already anticipated, we will be using the Gradient Boosting

implementation from LightGBM, a framework originally developed by Microsoft. Before

moving to the training criteria for our first GBRT model we will review some of the most

distinctive features in this implementation through its official documentation.

4.4.1. Distinctive technical aspects of the LightGBM implementation

As stated in the documentation (Microsoft & LightGBM Contributors, 2021) the main

advantages of this Gradient Boosting framework are the following:

• “Faster training speed and higher efficiency”.

• “Lower memory usage.

• “Better accuracy”.

• “Support of parallel, distributed, and GPU learning”.

• “Capable of handling large-scale data”.

One of the keys to speed and efficiency in terms of memory usage of LightGBM is,

according to the Features section in the documentation, that: “LightGBM uses histogram-

based algorithms (…), which bucket continuous feature (attribute) values into discrete

bins. This speeds up training and reduces memory usage”.

50

Another key operating feature is the “Leaf-wise (Best-first) Tree Growth” and it is

described as splitting the leaf that provides the maximum gain, weather it is in terms of

impurity or in terms of deviance reduction. This contrasts with the most common

optimization procedure based on a level-wise growth, the splits are evaluated or

performed following the order based on the current depth level.

It is also worth mentioning the treatment of categorical features, which are processed

directly instead of first applying the already common one-hot-encoding, described by the

documentation as “suboptimal for tree learners”.

After considering the previous particularity, we proceed to describe the encoding

method we will use for our categorical variables.

4.4.2. Response-based encoding for categorical features

In Machine Learning, the different algorithmic applications and case studies require

to adapt the information embedded in features through feature engineering, so that the

ML algorithms can process them correctly and learn the necessary trends concerning the

response variable.

Some of the most common encoding methods are the following:

• Dummy encoding: already used in our GLM training process

• One-hot-encoding: similar to the previous but with no base or reference

category, with each possible value being assigned with its own binary column.

• Ordinal encoding: each unique value is assigned to an integer value, this way

we could end up transforming a string variable into a numeric, as long as we

keep the reference of the label corresponding to each integer.

These are just some of the existing encoding schemes, but our proposal will actually

elaborate further on the Ordinal encoding. In fact, we will assign each integer value for

each category based on the average response (𝑦).

To understand the fundamental idea of Response-based encoding we will use the

summary data from our Brand feature in table 15 by sorting the column ‘Empirical

Frequency’ in descending order. The category with the highest empirical frequency is

‘VASkSe’ corresponding to Volkswagen, Audi, Skoda or Seat. The next categories have

a progressively lower average response, similar to a monotonic downward trend.

Table 15: Categorical Response-based encoding based on feature Brand

Source: own elaboration

51

In order to assign each integer, starting from 0 for the highest response category, 1 for

the second and so on; we used python dictionaries as the data structure to match the labels

to these values, and we did so with both responses: ‘Empirical Frequency’ and

‘ClaimAmount’.

The next table shows the Brand categories, with the values as integers that were

assigned to replace them:

Table 16: Brand Response-encoding for frequencies and for claim amounts

Source: own elaboration

It is very important to know that the order does not have to be the same for different

response variables, as we can see in this example. This means that we can only use each

Response-encoded version of the feature exclusively with that response, otherwise the

monotonicity cannot be guaranteed, and the train process can be compromised.

In our case study, we have performed and used in training the following categorical

Response-encodings:

• For Frequencies:

- Initial categorical features: Gas, Power, Brand and Region become

GasT, PowerT, BrandT and RegionT (T stands for ‘target’).

• For Claims:

- Simplified categorical features: PowerSmpl, BrandSmpl and

RegionSmpl become PowerSmplT2, BrandSmplT2, RegionSmplT2.

In the LightGBM setting this type of encoding helps training because with basic

Ordinal encoding, each tree will need a higher max. depth hyperparameter in order to

fully capture the non-monotonic evolution of the response across categories. With

Response-based encoding, a GBM with max. depth = 1 will be able to fully capture the

implied trend.

4.4.3. Basic GBM model fitting for frequencies

Through the function LGBMRegressor(…), from the LightGBM package in python,

the first proposed model fit will be trained over the same 330,422 instances that we

splitted for the train set in sub-section 4.1.1.3. for our frequency GLM. We maintain the

same data set partition to guarantee the homogeneity and comparability between all model

fittings.

52

The last-mentioned function is one adapted on a scikit-learn API, and this will prove

to be useful for tools like Partial Dependency Plots (PDP). This first training will isolate

the following columns from the frequency table:

• Response variable (𝑦): column ‘ClaimNb’ / ‘Exposure’.

• Predictor variables/features (𝒙): ‘PowerT’, ‘CarAge’, ‘DriverAge’, ‘BrandT’,

‘GasT’, ‘RegionT’, ‘DensityS’.

• Sample weights (𝑤): ‘Exposure’.

The parameter/hyperparameter configuration we will use for this model, is detailed

bellow:

• 𝑀𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ = 4

• 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.05

• 𝑛º 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 (𝑡𝑟𝑒𝑒𝑠) = 200

• 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = poisson

• 𝑀𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 500

In the documentation for LightGBM we can find details for many other parameters

and hyperparameters. But we will depart from this setting and improve upon it in section

4.4.4. Hyperparameter-tunning for frequencies.

4.4.3.1. Results of the first GBM fitting:

The total runtime for the model based on the previously shown configuration was 2.77

seconds20. Now that the model is built, we can consult some of its results through basic

attributes like the features importance.

Figure 18: Feature Importance for each predictor

Source: own elaboration

20 Even with the same random seed applied to the model fitting method in the LGBMRegressor

function, the time varies slightly on each run. The time obtained can be generated through our code in the

GBRT for Frequencies section (See Appendix C).

53

In figure 18 we have the Feature Importance in relative terms, which is calculated by

taking all deviance reductions (gains) across all trees (estimators) for each of the

predictors. This way, the feature with the higher gains will be set to one, and the following

features will be a proportion of it. Although relativization schemes can be modified into

each feature importance as a proportion of all gains instead of those of just the most

important feature.

The feature that provided the highest Poisson Deviance reductions on the train

samples across all 200 trees was the Driver Age, followed closely by population Density.

Car Age ended in third place, though it falls back significantly from the first two. The rest

of the features have less impact on feature reduction, yet they are still not negligible.

There are feature selection procedures that could eliminate the less important features

for a higher parsimony in the model. However, we are primarily based on the significance

for the variables already tested in our GLM models, meaning that if these variables

already provided significant results in our optimal frequency GLM, then they do hold

valuable information about the response even if it is at a smaller scale.

Figure 19: Value split-counts for DriverAge (left) and DensityS (right)

Source: own elaboration

There is additional information about the splits performed from each feature, and two

examples are depicted in figure 19, particularly for our most important predictors as of

figure 18. These plots show the cut-values that were used from the two most important

features across all trees. We know from the Decision Tree literature that at each node, the

best split from the respective feature will be selected, but now we can keep track of the

splits, and we can know the part of the distribution of each feature that concentrates the

majority of splits, meaning that there lies more information about the relationship of the

feature with the response around those points.

Finally, we can access the structure of each fitted tree from our model, this is very

convenient in order to have a visual interpretation of the core elements of the model.

54

Figure 20: First Decision Tree of the GBM model

Source: own elaboration

The tree in figure 20 represents the first of the 200 Decision Trees fitted in the model,

and as the first tree, it will launch a first estimation if the average response ‘ClaimNb’ but

given the log-link function, this relationship will not be 1 to 1. We remember the basic

EDM equivalence for this scenario (21):

μ̂(𝑥) = 𝑒𝑠𝑐𝑜𝑟𝑒

The term ‘score’ refers to the additive process of boosting, as we described in the

algorithm in section 2.4.3. and it includes the parameters of all trees in their partitioning

process. Therefore, the output values in each leaf from the depicted tree will be used to

compute the pseudo-residuals, and these will be successively corrected by the next trees.

The next fitted tree shows the beginning of this process, which is the boosting process

itself. Its structure can be seen in figure 21 and the values in the leaves are the corrections

over the outputs obtained in the first tree.

This process will continue until reaching the maximum number of estimators. And

even with the current couple of trees, we can clearly see that DriverAge and DensityS are

leading the majority of the splits.

55

Figure 21: Second Decision Tree of the GBM model

Source: own elaboration

4.4.4. Hyperparameter-tunning for frequencies

Now, it is important that we improve the current model by choosing the best set of

hyperparameters, and we will do so by applying a grid search upon different values of the

next basic hyperparameters:

• Learning rate: [0.05, 0.02, 0.01, 0.005]

• Nº estimators: [200, 500, 700, 1000]

• Max. depth: [4, 5, 6]

The resulting grid will have a total of 4 × 4 × 3 = 48 models, and we will perform

an exhaustive search to find the best out of all these options. The term ‘exhaustive’ means

that we will evaluate the GE from a validation set in each of the 48 combinations, and our

goal will be to determine the model that generalizes better to unseen instances. This is

done through the Cross-Validation (CV) evaluation approach.

In the next subsection we will quicky describe this procedure, and our customized tool

for performing it in python code in order to make it compatible with the LightGBM train

and fit function.

4.4.4.1. Cross-Validation

Cross-Validation is commonly used in the Machine Learning environment to assess

the predictive capabilities of a model without using yet the samples of the test set. This is

done because, as a common best practice, the test set should never be used to arrive at a

particular model configuration or a combination of hyperparameters.

56

This is because otherwise, our model will still be ‘learning’ in some way from those

unseen instances, adapting itself to them even if it is with a minor influence than in fitting.

Thus, a separate set is used for validation of the new fitted model, and it is generally taken

from a fraction of the train set.

Cross-Validation does exactly that but by splitting the original train set into K ‘folds’

or buckets of instances, and so the validation process is repeated in K iterations where

each of the folds will be used to validate the GE while the rest will be used as the train

folds for fitting. This process ensures that all instances of the original train set are

eventually used for fitting, and for evaluating the validation GE.

We show bellow the basic structure of our CV algorithm:

Algorithm 3:

➢ Step 1: Split the training set into K-folds of equivalent size:

𝒟 = {(𝑦𝑖 , 𝑥𝑖); 𝑖 = 1, … , 𝑁} = ∑ 𝒟Θ𝑗

𝐾

𝑗=1

➢ Step 2: for j = 1 to K:

I. Establish DΘ𝑗
 as validation set and 𝐷Θ𝑗̅̅̅̅ as train set.

II. Initiate and fit GBM model on DΘ𝑗̅̅̅̅ with specific hyperparameters (see

Algorithm 2).

III. Use the fitted model to predict the response based on 𝒟Θ𝑗
(𝒙).

IV. Compare actual validation responses 𝒟Θ𝑗
(𝑦) with the obtained

predictions through the evaluation measure (Deviance) to obtain the

Generalization Error: 𝐸𝑟𝑟𝑗̂ (μ̂).

V. Store the result for this iteration.

➢ Step 3: Compute the average validation GE:

𝐸𝑟𝑟𝑣𝑎𝑙
̂ (μ̂) =

1

𝐾
∑ 𝐸𝑟𝑟𝑗̂ (μ̂)

𝐾

𝑗=1

This algorithm will be performed for all hyperparameter combinations, and in each of

them we will register not only the evaluation GE, but also the runtime, in order to make

sure the computational efficiency matches a minimum requirement. This means that if

the grid search gives us a model with the best accuracy, but at the price of drastically

increasing the runtime, then we will choose the next model in case it has a substantially

lower runtime.

Additionally, in step 2.II. we have an additional parameter in the fitting process, this

is the Early Stopping rounds. Its purpose lies under the fact that even if we could add

more trees to our boosting algorithm, this might no longer improve the generalization

capabilities of our current model. So, if after a certain number of iterations we no longer

57

have an improvement in generalization, the model will stop adding any more trees. This

number is the value for the hyperparameter, and in our case it is set to a value of 20.

The Early Stopping rounds are part of the CV process, and it helps to increase

efficiency and to save runtime.

4.4.4.2. Grid search for optimal GBM model for frequencies

The Grid search process took 25.01 minutes to complete in a machine with processor

Intel(R) Core(TM) i7-6500U CPU and RAM of 8GB. All results were stored into a

summary data frame. The first 12 runs are displayed in the next table:

Table 17: Summary table for results of Grid Search

Source: own elaboration

We used the multi-index capabilities of pandas data frames to correctly order and

organize the information on GE values and runtimes. And if we sort the information by

the column ‘Validation GE’ in ascending order we get the information in table 18.

Table 18: Best performing models from the Grid Search

Source: own elaboration

In table 18 we see the top 5 best performing models, and all of them have

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 0.02 and the podium also have 𝑀𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ = 5. In terms of

runtime, these best models are all in the middle from the distribution based on the

available configurations, and no runtime is substantially lower for the model ranked just

below, so we finally decide to choose the first model as the optimal GBM for frequencies:

• The selected GBM for frequencies will have:

- 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 0.02

- 𝑛º 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 500

- 𝑀𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ = 5

58

4.4.4.3. Stochastic GBM for frequencies

In our basic Grid search we tried different configurations, yet inside them we left by

default the fraction of features hyperparameter, belonging to the already defined

Stochastic variant of Gradient boosting, were additional randomization features are

included to lower the correlation between trees.

The default value was 0.6, meaning that at each tree only a 60% of all available

features will be tested for the optimal split. In our case, by rounding up this proportion

from the 7 predictors used, we get that 4 features will be randomly selected at each

iteration of the boosting process.

There are other randomization parameters like bagging fraction, which takes the idea

from bagging trees and random forests in order to improve the diversification among trees

and speed up training. Yet in our case, after using the early stopping rounds to improve

runtime, and having validation GEs from the CV process, we decided this parameter does

not add any additional value to our current study case.

The simple search was built by trying the next values for the feature fraction:

- 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛: [0.4, 0.6, 0.8, 1] equivalent to number of features at each tree

of [3, 4, 6, 7] respectively

The results are displayed bellow:

Table 19: Stochastic GBM tunning of feature fraction

Source: own elaboration

It can be seen that our initial default value of 0.6 was in fact the best option, yet we

also note that the runtime is higher for this value, compared to values 0.8 and 1 with

barely two thirds of the runtime.

With all this, our final GBM model for frequencies is tunned and ready to make

predictions on a test set, as well as to make interpretations through Partial Dependency

Plots. All these topics will be carefully reviewed in Chapter 5 for Performance and

Results.

4.5. GBM model fitting for claim amounts.

Now it is time to move to the claim amounts modeling through GBM. And here we

face similar constraints to the GLM in terms of the available data set for training and the

lower predictive power from the features having a lower statistical significance for its

parameters.

59

Just like with GBM for frequencies, we will fit a first model configuration and then

improve upon it through a Grid search for its hyperparameters. Then we will point out the

main differences with its equivalent for frequencies and its GLM counterpart.

4.5.1. Basic GBM model fitting for claim amounts

• Response variable (𝑦): column ‘ClaimAmount’.

• Predictor variable/features (𝑥): ‘CarAge’, ‘DriverAge’, ‘PowerSmplT2’,

‘RegionSmplT2’, ‘DensityS’, ‘Frequency’

The reason for not including BrandSmplT2 or GasT is because when using an

alternative GLM for claim amounts, separate from our optimal model from section 4.2.3.,

which uses the previously established features but with DriverAgeB, we get significant

coefficients for all variables.

Table 20: Alternative GLM for claim amounts

Source: own elaboration

This is why we will start working with these features, and start simplifying from there,

to take out less important features.

In order to do this, we add a pure ‘Random’ feature generated as noise from random

numbers. This feature will also participate in the boosting process, so we will discard all

features with lower importance that this benchmark predictor.

But before showing the results, we quicky define the initial hyperparameter setting:

• 𝑀𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ = 2

• 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.02

• 𝑛º 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 500

• 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = gamma

• 𝑀𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100

Now we initiate and fit the LGBMRegressor, and runtime was less than 1 second,

mainly due to the lower amount of data, with 12,653 instances on the train set. The

resulting feature importance plot is shown below:

60

Figure 22: Feature importance for initial GBM for claim amounts

Source: own elaboration

Now we can see that RegionSmplT2 and PowerSmplT2 are below the implicit

threshold of the Random feature. Thus, we will delete them from our model and keep

only the first 4 features as predictors. This way we ensure a higher parsimony of our

model given that the data amount is much lower than in our frequencies database.

With this feature selection, we can move to the tunning of the parameters in order to

optimize the current model. The same process of CV will be used with Early stopping

rounds and an exhaustive Grid search will be performed although with a smaller extension

and much lower runtime.

4.5.2. Hyperparameter-tunning for frequencies

The grid used for search in this case was somewhat smaller, and its configuration can

be seen below:

• Learning rate: [0.05, 0.02, 0.01]

• nº Estimators: [200, 500, 700]

• Max. depth: [1, 2, 3]

The length of this grid will span across 27 different model combinations. The

summary table will compile the results, and now we show its top 3 best performing

models in terms of evaluation GE:

Table 21: Top three best performing models for claim amounts

Source: own elaboration

We see a tie between the two first models, and the runtimes are very similar as well.

Due to the early stopping rounds in the CV model, it is very likely that both models

stopped adding trees before reaching the 500 estimators, and for this reason, the best

decision is to stay with the first ranked model, due to its lower number of estimators.

61

We also repeated the process of Stochastic GBM tunning by choosing the best value

for Features fraction, and we considered the following grid:

• Feature fraction: [0.3, 0.6, 0.8, 1] equivalent to 1, 2, 3 and 4 features, respectively.

The results show that the feature fraction of 0.8 is performing better than the rest,

meaning that we will be using tree out of four features at each iteration of the boosting

trees process. The results are shown below:

Table 22. Stochastic GBM for claim amounts tunning

Source: own elaboration

Therefore our chosen model will have the next hyperparameters:

• 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 = 0.02

• 𝑛º 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 500

• 𝑀𝑎𝑥. 𝑑𝑒𝑝𝑡ℎ = 1

• 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.8

What might call the attention of the reader is that the maximum depth is 1, meaning

that there are no significant interactions between features that the model might be missing.

And as we noted in Chapter 2, these trees are called stumps.

In order to make a better illustration, we will display the first two and the last two

stumps from the chosen GBM for claim amounts:

Figure 23: First two and last two stumps from claim amounts GBM

Source: own elaboration

Frequency has a big presence, as it was expected. We can confirm this by plotting

again the feature importance for the tunned model.

62

Figure 24: Feature importance for tunned GBM for claim amounts

Source: own elaboration

Now we store this model for the performance analysis in Chapter 5 and proceed to

build the pure premium predictions for the GBM models we have trained and optimized.

4.6. GBM pricing machine

This exercise will follow the same steps as in the GLM scenario, but this time the

predictions will be made by the two LightGBM models we have previously chosen.

Now we can recover the example from table 13 about the random profile selected

from the frequency test set and priced with the optimal GLMs. Only now it will also have

the predictions from the GBM models.

In the example from table 23 we can already see that GLMs and GBM models are

making clearly different predictions. In terms of frequency, the GLM yields a higher

predicted value, but in terms of expected claim amount, the GBM model yields the highest

prediction. The resulting pure premium is, however, higher for the GLM based pricing

model.

Table 23: Single profile Pure premium for GLMs and GBM models

Source: own elaboration

A deeper prediction comparative analysis will be performed in Chapter 5, and it will

be done by elaborating the same Pure Premium Analysis table from section 4.3.1. but for

the GBM model predictions. And the result is displayed in the following table:

63

Table 24: Premium Analysis Table for GBM models

Source: own elaboration

Both the predictions from table 14 and 24 will be put face to face to study the

predictive profiles of both the GLMs and the GBM models in Chapter 5. Several metrics

will be used to assess how well both approaches adapted to the test dataset of policies,

and some fundamental conclusions will be drawn.

With this, all relevant methodology for our work has been covered, going through

software tools, statistical principles, visualization tools, and data wrangling techniques.

64

5. Performance and results

After completing our case study and training all of our models, we finally have the

outputs to evaluate which models are more accurate for predicting the core actuarial

random variables of claim frequencies and claim amounts.

And by ‘accurate’ we mean those models that can detect and adjust more effectively

to the real underlying risk profile. In other words, when a specific risk class or group of

policies with very similar characteristics have consistently shown a higher (lower) claim

frequency or/and a higher (lower) severity, the model will yield higher (lower) predictions

in terms of frequency and/or severity. The final result will be a premium that correctly

represents and adjusts to the true risk nature of each profile.

In the next section, we will present the results of this precision test both for the chosen

Generalized Linear Models and for the Gradient Boosting Regression Trees according to

the GE obtained from the Deviance measures.

5.1. Comparative predictive performance

We have registered the GE results for both train set and test set predictions, even

though we will mainly focus on the latter. The table including these metrics is shown

below:

Table 25: Performance comparison table

 Source: own elaboration

As we already noted in our work, the test set GE can be expected to be slightly higher

than the train set GE, and we can clearly see this effect here on table 25. But when it

comes to the difference between models, we must compare those models that have the

same GE type, meaning that they were, in practice, modelling the same actuarial random

variable.

When comparing frequency or number of claims models the Gradient Boosting

Regression Tree has a clearly lower Generalization Error, as measured on an unseen

portfolio of policies, than the Generalized Linear Model. Similarly, for severity or claim

amounts models the GBRT models outperform both of their GLM counterparts.

As a reminder of the feature configuration we have for Frequency models:

65

• Fine-tunned frequency GBM: 𝐶𝑙𝑎𝑖𝑚𝑁𝑏/𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 +

𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 + 𝐺𝑎𝑠𝑇 + 𝑃𝑜𝑤𝑒𝑟𝑇 + 𝐵𝑟𝑎𝑛𝑑𝑇 + 𝑅𝑒𝑔𝑖𝑜𝑛𝑇 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆

∗ {𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒} ∗

• Optimal frequency GLM: 𝐶𝑙𝑎𝑖𝑚𝑁𝑏 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 + 𝐺𝑎𝑠 +

𝑃𝑜𝑤𝑒𝑟𝑆𝑚𝑝𝑙 + 𝐵𝑟𝑎𝑛𝑑 + 𝑅𝑒𝑔𝑖𝑜𝑛𝑆𝑚𝑝𝑙 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆

∗ {𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒} ∗

And for Claim Amounts:

• Fine-tunned severity GBM: 𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 +

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

• Fine-tunned alt. severity GBM: 𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 +

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆

• Optimal severity GLM: 𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒𝐵 +

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

• Optimal Alt. severity GLM: 𝐶𝑙𝑎𝑖𝑚𝐴𝑚𝑜𝑢𝑛𝑡 ~ 𝐶𝑎𝑟𝐴𝑔𝑒 + 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒𝐵 +

𝑃𝑜𝑤𝑒𝑟𝑆𝑚𝑝𝑙𝑇 + 𝑅𝑒𝑔𝑖𝑜𝑛𝑆𝑚𝑝𝑙𝑇 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆

Therefore the two models with the best predictive performance are:

➢ The Fine-tunned frequency GBM model for the number of claims.

➢ The Fine-tunned severity GBM model for claim amounts.

The previous results were contrasted by running the whole modeling project with 5

different random seeds for the train/test split from the original frequency table, which

conditions all of our models. In all 5 runs the two previously mentioned models were once

again outperforming their GLM counterparts.

Regarding the two alternative severity models, Fine-tunned alt. severity GBM and

Optimal Alt. severity GLM, the former comes from the model chosen at the end of section

4.5.2. but excluding the feature ‘Frequency’, while the latter discards this same feature

but for the model shown at the beginning of section 4.5.1. in Table 20. The reasoning for

this strategy will be fully explained in section 5.3. for premium comparative analysis.

5.2. Partial dependency plots

After determining the best performing models, we can finally make use of the most

important interpretative tools for complex ML models like GBMs. And these tools are

the Partial dependency plots (PDPs), used for assessing the ‘learned’ information from

the data by our model.

The idea of PDPs is simple, they use a set of observations (maybe the train set

observations or even the test set observations) to make predictions of the response

variable for each sample. And for that particular instance, the prediction from the model

will be repeated but by modifying the value of one feature of interest in a way that we can

assess the sensitivity of the prediction result for its whole range of values.

As a quick example, if our first instance has 𝐷𝑟𝑖𝑣𝑒𝑟𝐴𝑔𝑒 = 26 then we will use our

GBM model for frequencies to make the prediction of the response. After this, we will

66

repeat the predictions for other possible values of DriverAge and register the response.

After performing this process on all samples, we average the response values for each

DriverAge value, and this would give us the plot line for the PDP of the DriverAge

feature.

In the next figure, we will depict the PDPs for all predictors in the Fine-tunned

frequency GBM model.

Figure 25: PDPs for Fine-tunned frequency GBM model

 Source: own elaboration

We can immediately see patters that the GLMs would not be able to capture in the

same fashion. We list some of them below:

• DriverAge and CarAge have non-monotonic trend patterns that the linearity

of GLMs cannot assimilate.

67

• DensityS seems to have a more complex dependency structure than any other

feature as we can see in the last two PDPs, this can the studied further by the

analyst though the effect of different relevant cities on the response.

• The categorical features, with the exception of Region, have all a descending

monotonic trend, although the linearity is again not perfect, which shows that

our model could learn with a higher precision the effect on response for all

categories.

It is important to note, that for continuous variables like DriverAge, CarAge or

DensityS, not all possible values are used to make the predictions on each instance.

Instead, a set of quantile points are taken from the distribution of each feature to compute

the predictions, these are called grid points, and they are the points we can see on the

PDPs, drawing the main line.

The same set of plots can be derived for the features included in the Fine-tunned

severity GBM.

Figure 26: PDPs for Fine-tunned severity GBM model

Source: own elaboration

Here once again we observe very detailed dependency structures for DriverAge and

CarAge that could not be captured by a linear model. Some other valuable insights are:

• The possibility to establish 4 relativity levels based on DriverAge, because the

PDP shows 4 intervals with a specific response level, and this information

could also be introduced to a GLM with a categorical DriverAge configuration

through binning.

• Something similar can be done with CarAge, with a total of 2 relativity level

based on response.

• DensityS could have 3 relativities derived from the PDP, being equivalent to

3 population density intervals as city profiles.

68

• The complexity of Frequency gives an idea of the amount of information

contained in this feature about the expected claim amount. This information

cannot be disregarded, and it can even be helpful in reserving problems like

IBNER estimation.

The Frequency feature has a major weight on the predictions of the model, and this

makes sense with the feature importance plot seen in figure 22. In fact, the higher the

importance of a figure across the model, the more information about the dependency

structure will be available.

This, however, might have some undesirable effects on the pricing process for the

unseen policies in the frequencies test set. We will see in the next section what these

effects are and what was our approach for dealing with them.

5.3. Pure premium comparative analysis

If we recall the pricing machines from sections 4.3. and 4.6. we will see that the model

for severities included the feature ‘Frequency’ in both cases. However this will lead to a

significant bias when predicting the claim amounts of profiles with no reported claims.

Given that we fitted our severity models on the train claim dataset, in all of those

instances there was at least one reported claim, and the ‘Frequency’ feature had a value

equal or above 1 on 99.91% of the samples. However, something very different happens

in the context of a frequency table, like the frequency test table we intend to use for

pricing, where 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ 1 would only be true for a 3.83% of all test profiles.

This extreme change in distribution would make the severity predictions lower, and

therefore most of the premiums would tend to be inferior in value, which is something

undoubtedly dangerous for an insurance company.

Table 26: Comparative pure premium table

Source: own elaboration

This is why the final comparative premium analysis will be done through the

alternative severity models, both for the GLM and the GBM model. The predictions based

on the two adjusted pricing machines have been put face to face in a unique table, as

depicted in table 26, in order to directly see the difference in pure premiums.

69

5.3.1. Summary statistics tables

The information in table 26 from the previous section compiles not only the two

predicted pure premiums for each policy, but also the observed losses in the ‘Aggregated

Loss’ column. This information can be analyzed through basic statistics about the pricing

process like those presented in the next table:

Table 27: Basic summary statistics for Comparative table

Source: own elaboration

Some of the fundamental aspects to extract from this table are the following:

1. The mean aggregated loss is compared with the average premiums for both

GLMs and GBM schemes. And we can see that both predicted premiums fall

short to the average loss in the test portfolio.

2. Although the mean premium from the GBM pricing machine is slightly higher

than its GLM analog, what is more interesting is its higher standard deviation,

with almost a 10% additional dispersion compared to the GLM premiums.

The source of our shortfall can come from the frequencies in the test set, or from the

claim amounts, so we quicky calculate the average values for both actuarial variables on

the train set, and then on the test set, and the results are:

- The empirical frequency on train set was 0.068202 and 0.07026 on test set,

being the difference of a 3.018% in favor of the test set.

- The average severity on train set was 1,281.16€ while on test set this value

was 1,278.41€. The relative difference was 0.215% in favor of the train set.

We conclude that the excess in loss on the test set comes from a higher total frequency,

and this is purely an effect from the chosen random seed for splitting the original

frequency table. This can be used as a ‘stressed’ scenario where our pricing schemes will

have to adapt in order to cover the additional losses.

Before concluding this section, we must also show the loss performance table, where

we will contrast if any of our pricing schemes was able to cover the previously mentioned

shortfall.

70

Table 28: Comparative total aggregated loss statistics

Source: own elaboration

In table 27 we see the result of calculating the total value for different metrics at a

portfolio level. We see the total number of claims reported (ClaimNb) throughout all

samples in the frequency test set, as well as the total number of observed years

(Exposure). The Aggregated Loss row shows us the total incurred loss in the portfolio,

and it is the metric that both the GLM and GBM model will have to match.

And although the GBM pricing machine gets closer to the actual loss, both of them

are below its actual value. The shortfall can also be calculated in terms of Loss Ratio

shown at the last row, being the only relative measure. As we expected, the Loss Ratio is

slightly higher for the GBM scheme.

This type of stressed scenarios is very common to see in the insurance practice, where

the actuarial random variables can naturally fluctuate in our favor or against it. In our

current scenario, a common alternative is to establish a Relative Security Loading, of 10%

additional to our premium.

5.3.2. Comparative scatter plots for predicted premiums

The information in table 27 and our second remark about the GBM pure premiums

having a higher dispersion compared to the GLM setting rases some questions about how

the distributions of the predicted premiums from both methodologies compare with each

other.

Basically, we want to know how the models are working in practice and what ‘pricing

styles’ correspond to each of them, in term of how they are treating riskier or less risky

profiles.

Thus, our first visualization aimed at this goal will be a scatter plot that faces each

GBM pure premium prediction with its GLM counterpart, which will help to visualize

the degree of dispersion of the models' predictions between each other.

We will know that the predictions do not differ significantly across policies if all

points lie close to the diagonal line. However, if the points tend to separate significantly

from this line, then we will have evidence that there are many discrepancies between the

two pricing models.

71

Figure 27: Comparative scatter plot for pure premium

Source: own elaboration

The scatter plot in figure 27 reveals an important discrepancy between the pricing

models. And although the trend following the diagonal line is clear, the dispersion also

increases with the value of the predicted premium for both pricing models. One of the

most important and insightful details from the plot is the 'leakage' of points in the lower

triangle from the diagonal, specifically towards the sections on the right, corresponding

to the higher GBM pure premium values.

Figure 28: Comparative scatter plot for annualized pure premium

Source: own elaboration

72

The 'leakage' effect means that the GBM models is pricing some profiles with a much

higher premium than the GLMs. But these policies are scaled to the exposure of the

observations, which can delude some important information about the overall

discrepancies. And given that in reality the new policies are usually subscribed for periods

of one year, we can set the same comparison but for the annualized pure premiums in a

new scatter plot in figure 28.

Now we can see additional information about the difference in premiums depending

on the pricing scheme. Not only the 'leakage' is more evident now, but also the higher

concentration of points in the upper triangle towards lower premium values. This means

that the GBM pricing method is charging a lower premium to many policies than the

charge from the GLM counterpart.

The interpretation of these two facts is key to understanding the differences in pricing

between the two modeling approaches. And for this purpose we will analyze the similarity

between the distributions of their annualized pure premiums. A common method this type

of comparison is through a QQplot, and we will use it to compare the percentiles from

1% to 99% of the annualized pure premium from the GBM pricing method with the same

percentiles from the GLM pricing method.

Figure 29: QQplot for pure premium pricing schemes distributions

Source: own elaboration

73

As we were already anticipating from the previous plot, the distribution of the pure

premiums from both GLMs and GBM models has significant differences on both ends

when annualized. Specifically, we see that for values below 100€, the premiums

calculated by the GLMs are in fact higher than those from GBM models. This changes

after percentile 69%, where GBM models surpass GLMs in their predicted premiums and

the closer to the right end of the distribution, the higher the tuition from the GBM based

pricing machine.

In this sense, we see that GBM models charge a significantly higher premium to the

profiles it considers as riskier, while also charging less to the perceived as less risky

profiles, all of it when comparing to the GLM based pricing machine. Based on these

results, we conclude that the GBM pricing machine has a higher capacity for

differentiating high risk profiles from those with lower risk.

74

6. Conclusions

Gradient Boosting algorithms have all the necessary statistical properties to

effectively capture the risk nature of different insurance profiles, both for predicting

actuarial variables like frequencies and severities and for building a full pricing scheme

where the basis for a final tariff can be calculated.

In fact, GBM based pricing models have proven to possess a higher predictive

performance and a better risk profile assessment capacity than their predecessors based

on Generalized Linear Models. In this sense, an insurance company can rely on the

information and insights provided by these Ensembles of Trees in order to enhance the

overall pricing process and seek to improve its corporate results.

However, regulations in the field of pricing, solvency and internal auditing can still

hamper the expansion of Gradient Boosting as a dominant tariff scheme, given that GLMs

have an interpretative structure already cemented and trusted in the industry and across

stakeholders, whilst GBMs are still considered as part of a ‘black-box’ paradigm where

the complexity of the inner process still generates doubts across analysts and supervisors.

In this regard, the integration of Machine Learning in the insurance corporate

environment is expected to be slow, although constant in time. For the purpose of our

proposed implementation, we consider that Gradient Boosting algorithms can already be

implemented and deployed in insurance companies as a complementary analytical and

comparative tool that enhances the training for GLMs and their tariff criteria, by giving

proposed feature intervals based in the information of Partial Dependency Plots in order

to obtain a set of more representative relativities. This way, the ease of GBM models for

detecting non-linearities and non-monotonic patterns can already be leveraged in the

GLM context.

This strategy is just part of the overall transformation process that is currently taking

place in the insurance analytical environment, it is possible that better implementations

of Gradient Boosting will be developed and eventually used for similar purposes. One

example is the rapid growth of Neural Networks based applications, and their reach spans

across multiple potential actuarial applications.

In addition, the pricing process can be enriched not only by the contributions of GBM

models for basic risk costing, as we have seen in our work, but also for more advanced

stages like those depicted by Parodi, P. (2015) as the “High-level Pricing Process”,

including security and risk loadings, expense loadings as well as capital loadings.

Other complementary ML applications can be proposed for the extreme claim

amounts filtered out in our study case, because in reality those claims also must be

modeled and carefully studied by the analyst, and in this context proposals like the one

from Valdivia, L. (2020) can be useful, where Generative Adversarial Networks (GAN)

are used to model infrequent events such as extreme values, similar to our excluded

75

policies, which were much less frequent than the common claim amounts. One of the

main conclusions of this work is that the implementation of GANs along with a classical

Extreme Value Theory model yields significantly better results.

This last application proves that our proposed strategy of using an advanced Machine

Learning method like Gradient Boosting along with a more traditional statistical method

like GLMs in order to improve the overall analytical process can actually be a successful

strategy and it is worth being considered in today’s high-level insurance and actuarial

environments.

76

7. Bibliography

7.1. Literary references

Ahlgren, M. (2018). Claims Reserving using Gradient Boosting and Generalized

Linear Models. KTH, Matematisk statistik.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

https://doi.org/10.1023/A:1010933404324

Chen, T., & Guestrin, C. (Aug 13, 2016). XGBoost. Paper presented at the 785-794.

https://doi.org/10.1145/2939672.2939785 http://dl.acm.org/citation.cfm?id=2939785

Davoudi Kakhki, F., Freeman, S., & Mosher, G. (2018). Analyzing Large Workers’

Compensation Claims Using Generalized Linear Models and Monte Carlo Simulation.

Safety (Basel), 4(4), 57. https://doi.org/10.3390/safety4040057

Denuit, M., Hainaut, D., & Trufin, J. (2019). Effective Statistical Learning Methods

for Actuaries I. Springer International Publishing AG.

Denuit, M., Hainaut, D., & Trufin, J. (2020). Effective Statistical Learning Methods

for Actuaries II. Springer International Publishing AG.

Diana, A., Griffin, J. E., Oberoi, J. S., & Yao, J. (2019). Machine-Learning Methods

for Insurance Applications - a survey. Society of Actuaries. https://kar.kent.ac.uk/71090

Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting. Journal of Computer and System

Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504

Garrido, J., Genest, C., & Schulz, J. (2016). Generalized linear models for

dependent frequency and severity of insurance claims. Insurance, Mathematics &

Economics, 70, 205-215. https://doi.org/10.1016/j.insmatheco.2016.06.006

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow, 2nd Edition (2nd ed.). O'Reilly Media, Inc.

https://doi.org/10.1023/A:1010933404324
http://dl.acm.org/citation.cfm?id=2939785
https://doi.org/10.3390/safety4040057
https://kar.kent.ac.uk/71090
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/j.insmatheco.2016.06.006

77

Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling

and prediction. Expert Systems with Applications, 39(3), 3659-3667.

https://doi.org/10.1016/j.eswa.2011.09.058

Hanafy, M., & Ming, R. (2021). Machine Learning Approaches for Auto Insurance

Big Data. Risks (Basel), 9(2), 42. https://doi.org/10.3390/risks9020042

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Elements of Statistical Learning.

Springer.

Jerome H. Friedman. (2001). Greedy Function Approximation: A Gradient Boosting

Machine. The Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.2307/2699986

Maillart, A. (2021). Toward an explainable machine learning model for claim

frequency: a use case in car insurance pricing with telematics data. European Actuarial

Journal, https://doi.org/10.1007/s13385-021-00270-5

Ng, S., Lestari, D., & Devila, S. (2019). Generalized linear model for deductible

pricing in non-life insurance. AIP Conference Proceedings, 2168(1)

https://doi.org/10.1063/1.5132465

Noll, A., Salzmann, R., & Wuthrich, M. V. (2015). Case Study: French Motor

Third-Party Liability Claims. SSRN Electronic Journal,

https://doi.org/10.2139/ssrn.316476

Ohlsson, E., & Johansson, B. (2015). Non-Life Insurance Pricing with Generalized

Linear Models. Springer Berlin / Heidelberg.

Parodi, P. (2015). Pricing in General Insurance (1st ed.). Chapman and Hall/CRC.

https://doi.org/10.1201/b17525

Quan, Z., & Valdez, E. A. (2018). Predictive analytics of insurance claims using

multivariate decision trees. Dependence Modeling, 6(1), 377-407.

https://doi.org/10.1515/demo-2018-0022

Su, X., & Bai, M. (2020). Stochastic gradient boosting frequency-severity model of

insurance claims. PloS One, 15(8), e0238000.

https://doi.org/10.1371/journal.pone.0238000

https://doi.org/10.1016/j.eswa.2011.09.058
https://doi.org/10.3390/risks9020042
https://doi.org/10.2307/2699986
https://doi.org/10.1007/s13385-021-00270-5
https://doi.org/10.1063/1.5132465
https://doi.org/10.2139/ssrn.316476
https://doi.org/10.1201/b17525
https://doi.org/10.1515/demo-2018-0022
https://doi.org/10.1371/journal.pone.0238000

78

Sun, S., Bi, J., Guillen, M., & Pérez-Marín, A. M. (2020). Assessing Driving Risk

Using Internet of Vehicles Data: An Analysis Based on Generalized Linear Models.

Sensors (Basel, Switzerland), 20(9), 2712. https://doi.org/10.3390/s20092712

Valdivia Ameller, L. A. (2020). Uso de datos sintéticos provenientes de redes

neuronales para la mejora de la modelización de la severidad de eventos infrecuentes.

Centro De Documentación Fundación Mapfre,

https://documentacion.fundacionmapfre.org/documentacion/publico/i18n/catalogo_ima

genes/grupo.do?path=1108389

7.2. Software documentation

Dutang, C., & Charpentier, A. (2020). CASdatasets-manual.

http://cas.uqam.ca/pub/web/CASdatasets-manual.pdf

McKinney, W., & Pandas Development Team. (2021). pandas: powerful Python

data analysis toolkit [computer software]. https://pandas.pydata.org/docs/pandas.pdf

Microsoft, & LightGBM Contributors. (2021). LightGBM.

https://lightgbm.readthedocs.io/en/latest/

scikit-learn, 0. 2. 2. (2021). User Guide. https://scikit-

learn.org/stable/user_guide.html

statsmodels v0.13.0.dev0. (2021). Generalized Linear Models.

https://www.statsmodels.org/stable/glm.html

https://doi.org/10.3390/s20092712
https://documentacion.fundacionmapfre.org/documentacion/publico/i18n/catalogo_imagenes/grupo.do?path=1108389
https://documentacion.fundacionmapfre.org/documentacion/publico/i18n/catalogo_imagenes/grupo.do?path=1108389
http://cas.uqam.ca/pub/web/CASdatasets-manual.pdf
https://pandas.pydata.org/docs/pandas.pdf
https://lightgbm.readthedocs.io/en/latest/
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://www.statsmodels.org/stable/glm.html

79

Appendix

A. Parametrization for EDM family member distributions

The following table was extracted from Denuit et al., (2019) and it represents the the

parameters and cumulant function of different functions belonging to the EDM family of

distributions. In each row we also have the mean and variance for illustrative purposes.

Source: Denuit, M., Hainaut, D., & Trufin, J. (2019). Effective Statistical Learning

Methods for Actuaries I

80

B. Simulated dataset for Decision Tree illustration

Our simulated dataset was developed in a Python Jupyter Lab environment with the purpose of

illustrating how can Decision Trees approach a complex variable dependency structure.

import sys
import sklearn
import pandas as pd
import numpy as np
import os
np.random.seed(42)

To plot pretty figures
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

#Artificial Dataset

#The simulation will generate and artificial dataset for claims reported for cars of different ages. Our predicted
variable #will be Claim, and will take values of 1 (claim reported) or 0 (no claim). The predictor and sole feature
will be Vehicle Age #and will take different integer values from 0 to 20.

import random
random.seed(28)
age = np.random.binomial(n = 20, p = 0.05, size = 1000)
age2 = np.random.binomial(n = 20, p = 0.2, size = 1000)
age3 = np.random.binomial(n = 20, p = 0.5, size = 1000)
age4 = np.random.binomial(n = 20, p = 0.75, size = 500)
age5 = np.random.binomial(n = 20, p = 0.95, size = 500)

np.unique(age, return_counts = True)
np.unique(age3, return_counts = True)
np.unique(age4, return_counts = True)
np.unique(age5, return_counts = True)
ageveh = np.concatenate((age, age2, age3, age4, age5))
claim = np.concatenate((np.repeat(1, 1000), np.repeat(0, 1000), np.repeat(1, 1000), np.repeat(0, 5
00), np.repeat(1, 500)))
ageveh.shape
claim.shape

#We must now re arrange the data into a DataFrame

dataset = pd.DataFrame({'Claim': claim, 'Vehicle Age': ageveh})
dataset
yes = dataset.loc[dataset["Claim"] == 0, "Vehicle Age"].value_counts()
no = dataset.loc[dataset["Claim"] == 1, "Vehicle Age"].value_counts()
yes = yes.sort_index()
no = no.sort_index()
yes.head(10)
no.head(10)
ind = list(range(4000))
rnd = random.sample(ind, k = 4000)
len(rnd)

dataset = dataset.reindex(rnd)

dataset["PolicyID"] = ind
dataset = dataset.set_index(keys="PolicyID")
#dataset.reset_index()

81

dataset
fig, ax = plt.subplots()
ax.scatter(dataset["Vehicle Age"], dataset["Claim"], alpha = 0.01, color = "r")
ax.set_xlabel("Age of Vehicle")
ax.set_ylabel("Claim status")
ax.set_title("Claim Density for Age of Vehicle")
plt.show()

type(yes)

yesno = pd.merge(left = yes, right = no, how = "outer", left_index = True, right_index = True)
yesno.columns = ['Yes', 'No']
yesno = yesno.fillna(0)
yesno['Yes'] = yesno['Yes'].astype('int64')
yesno
fig, ax = plt.subplots()
ax.bar(yesno.index, yesno["Yes"], label = "Yes")
ax.bar(yesno.index, yesno["No"], bottom = yesno["Yes"], label = "No")
ax.set_ylabel("Nº of policies")
ax.set_xlabel("Age of the Vehicle")
ax.set_title("Claim ocurrance count per vehicle Age")
ax.legend()

#Decision Tree for Classification
#We will use sklearn DecisionTreeClassifier to illustrate and example based in our artificial dataset.

from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn import metrics

X = dataset["Vehicle Age"].to_numpy().reshape(-1, 1)
y = dataset["Claim"].to_numpy().reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
clf = tree.DecisionTreeClassifier(max_depth=4, max_leaf_nodes=5)

clf = clf.fit(X_train, y_train)

tree.plot_tree(clf)

82

C. GLM and GBM modeling and comparison

This is the source code for the main analysis of our work, it covers the tables, figures and procedures

depicted and described in Chapters 3, 4, 5 and 6. All outputs have been cleared, although some

comments and section headlines are still present in order to ease identifying each part.

French Motor TPL

import sys
import sklearn
import pandas as pd
import numpy as np
import os
np.random.seed(42)

To plot pretty figures

import matplotlib as mpl
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

Data Import for French Motor TPL Portfolio

freMTPLfreq = pd.read_csv("C:\\Users\\usuario\\Desktop\\Uni\\Máster 2º Año\\Cuarto Cuatrimestre\\T
FM\\TFM code and data\\freMTPLfreq.csv", index_col = 'PolicyID')
freMTPLsev = pd.read_csv("C:\\Users\\usuario\\Desktop\\Uni\\Máster 2º Año\\Cuarto Cuatrimestre\\TF
M\\TFM code and data\\freMTPLsev.csv", index_col = 'PolicyID')

Basic Exploratory Data Analysis

pd.options.display.max_rows = 20
freqs0 = freMTPLfreq
freqs0.head(10)

freMTPLfreq['Brand'].value_counts()

freqs0.describe()

freqs0['DriverAge'].value_counts().sort_index()[70:] # Delete all values above 50, probably outlie
rs

freqs0[['Power', 'Brand', 'Gas', 'Region']] = freqs0[['Power', 'Brand', 'Gas', 'Region']].astype("
category")
freqs0.info()

freqs0['Brand'].cat.categories

Additional feature versions are introduced:

freqs0['DensityS'] = freqs0['Density']/1000
freqs0['DriverAgeB'] = pd.cut(freqs0.DriverAge, bins = [0, 23.5, 69.5, 100], labels = ['18-23', '2
4-69', '70+'])
freqs0['Frequency'] = freqs0['ClaimNb'] / freqs0['Exposure']

Claim Amounts preprocessing

All claim amounts above 10_000 are filtered out from uor database

claims1.loc[claims1["ClaimAmount"] > 10_000, "ClaimAmount"] = 10_000
outclaims = freMTPLsev[freMTPLsev['ClaimAmount'] > 10_000]
claims = freMTPLsev[freMTPLsev['ClaimAmount'] <= 10_000]
claims.shape

print(f'Total initial claim amounts where {freMTPLsev.shape[0]}')
print(f'Total current claim amounts are {claims.shape[0]}')

83

print(f'The outlier claims where {outclaims.shape[0]}, which is a {outclaims.shape[0]/freMTPLsev.s
hape[0]:.2%} of the total dataset')

corrector = outclaims.groupby(level = 0).count()
corrector['ClaimAmount']

freqs = freqs0.copy()
freqs0.loc[corrector.index, 'ClaimNb']

We correct the frequencies based on the information from the filtered out counts to maintain data integrity.

freqs.loc[corrector.index, 'ClaimNb'] = freqs0.loc[corrector.index, 'ClaimNb'] - corrector['ClaimA
mount']
freqs.loc[corrector.index, 'ClaimNb']

freqs['ClaimNb'].sum()

Renaming categories

freqs['Brand'] = freqs['Brand'].cat.rename_categories({'Fiat':'Fi', 'Japanese (except Nissan) or K
orean':'J-{N}/K',
 'Mercedes, Chrysler or BMW':'MChB', 'Opel,
General Motors or Ford':'OGmF',
 'Renault, Nissan or Citroen':'RNC', 'Volksw
agen, Audi, Skoda or Seat':'VASkSe', 'other':'other'})
freqs['Region'] = freqs['Region'].cat.rename_categories({"Aquitaine":"Aq", "Basse-Normandie":"BN",
"Bretagne":"Br", "Centre":"Ce",
 "Haute-Normandie":"HN", "Ile-de-France":"
IdF", "Limousin":"L", "Nord-Pas-de-Calais":"NPdC",
 "Pays-de-la-Loire":"PdlL", "Poitou-Charen
tes":"PC"})

Simplifying categories

freqs["PowerSmpl"] = freqs.Power.astype(str)
freqs.loc[freqs["PowerSmpl"]=="e", "PowerSmpl"] = "eg"
freqs.loc[freqs["PowerSmpl"]=="g", "PowerSmpl"] = "eg"
freqs.loc[freqs["PowerSmpl"]=="l", "PowerSmpl"] = "klmno"
freqs.loc[freqs["PowerSmpl"]=="m", "PowerSmpl"] = "klmno"
freqs.loc[freqs["PowerSmpl"]=="n", "PowerSmpl"] = "klmno"
freqs.loc[freqs["PowerSmpl"]=="o", "PowerSmpl"] = "klmno"
freqs.loc[freqs["PowerSmpl"]=="k", "PowerSmpl"] = "klmno"
freqs["PowerSmpl"] = freqs.PowerSmpl.astype("category")
freqs["PowerSmpl"].value_counts()

freqs["RegionSmpl"] = freqs.Region.astype(str)
freqs.loc[freqs["RegionSmpl"]=="Br", "RegionSmpl"] = "BrBNHN"
freqs.loc[freqs["RegionSmpl"]=="BN", "RegionSmpl"] = "BrBNHN"
freqs.loc[freqs["RegionSmpl"]=="HN", "RegionSmpl"] = "BrBNHN"
freqs.loc[freqs["RegionSmpl"]=="L", "RegionSmpl"] = "LNPdC"
freqs.loc[freqs["RegionSmpl"]=="NPdC", "RegionSmpl"] = "LNPdC"
freqs["RegionSmpl"] = freqs.RegionSmpl.astype("category")
freqs["RegionSmpl"].value_counts()

freqs.Region.value_counts()

freqs["BrandSmpl"] = freqs.Brand.astype(str)
freqs.loc[freqs["BrandSmpl"]=="RNC", "BrandSmpl"] = "RNC_J-{N}/k"
freqs.loc[freqs["BrandSmpl"]=="J-{N}/K", "BrandSmpl"] = "RNC_J-{N}/k"
freqs.loc[freqs["BrandSmpl"]=="MChB", "BrandSmpl"] = "MChB_OGmF"
freqs.loc[freqs["BrandSmpl"]=="OGmF", "BrandSmpl"] = "MChB_OGmF"
freqs["BrandSmpl"] = freqs.BrandSmpl.astype("category")
freqs["BrandSmpl"].value_counts()

84

Feature Summary Tables

CarAgeData = freqs.groupby(['CarAge']).sum()[['ClaimNb', 'Exposure']]
CarAgeData['Empirical Frequency'] = CarAgeData['ClaimNb'] / CarAgeData['Exposure']

DriverAgeData = freqs.groupby(['DriverAge']).sum()[['ClaimNb', 'Exposure']]
DriverAgeData['Empirical Frequency'] = DriverAgeData['ClaimNb'] / DriverAgeData['Exposure']

PowerData = freqs.groupby(['Power']).sum()[['ClaimNb', 'Exposure']]
PowerData['Empirical Frequency'] = PowerData['ClaimNb'] / PowerData['Exposure']

BrandData = freqs.groupby(['Brand']).sum()[['ClaimNb', 'Exposure']]
BrandData['Empirical Frequency'] = BrandData['ClaimNb'] / BrandData['Exposure']

GasData = freqs.groupby(['Gas']).sum()[['ClaimNb', 'Exposure']]
GasData['Empirical Frequency'] = GasData['ClaimNb'] / GasData['Exposure']

RegionData = freqs.groupby(['Region']).sum()[['ClaimNb', 'Exposure']]
RegionData['Empirical Frequency'] = RegionData['ClaimNb'] / RegionData['Exposure']

PowerSmplData = freqs.groupby(['PowerSmpl']).sum()[['ClaimNb', 'Exposure']]
PowerSmplData['Empirical Frequency'] = PowerSmplData['ClaimNb'] / PowerSmplData['Exposure']

RegionSmplData = freqs.groupby(['RegionSmpl']).sum()[['ClaimNb', 'Exposure']]
RegionSmplData['Empirical Frequency'] = RegionSmplData['ClaimNb'] / RegionSmplData['Exposure']

BrandSmplData = freqs.groupby(['BrandSmpl']).sum()[['ClaimNb', 'Exposure']]
BrandSmplData['Empirical Frequency'] = BrandSmplData['ClaimNb'] / BrandSmplData['Exposure']

Target/Response encoding

cats = ['Power', 'Brand', 'Gas', 'Region', 'PowerSmpl', 'RegionSmpl', 'BrandSmpl']
catsT = [cat+'T' for cat in cats]
tables = [PowerData, BrandData, GasData, RegionData, PowerSmplData, RegionSmplData, BrandSmplData]
keys = [data.sort_values(by = 'Empirical Frequency', ascending = False).index for data in tables]

We program the encoder function that will take any set of categorical values sorted decreasingly
according
to their mean effect on the response.
def TargetEncoder(keys):
 dicts = {}
 values = 0
 for i in keys:
 dicts[i] = values
 values += 1
 return dicts
Encodings = {cat:TargetEncoder(key) for (cat,key) in zip(catsT,keys)}
print(Encodings)

We assign new versions of our categorical variables and establish the target encoding for them
for i in range(len(cats)):
 freqs[catsT[i]] = freqs[cats[i]]
freqs = freqs.replace(Encodings)

The unpdated frequency table can the visualized:
freqs.head()

BrandSmplTData = freqs.groupby(['BrandSmplT']).sum()[['ClaimNb', 'Exposure']]
BrandSmplTData['Empirical Frequency'] = BrandSmplTData['ClaimNb'] / BrandSmplTData['Exposure']
BrandSmplTData

claims = pd.merge(left = claims, right = freqs, how = "left", left_index = True, right_index = Tru
e)

85

claims['Frequency'] = claims['ClaimNb'] / claims['Exposure']
claims = claims.drop(['ClaimNb','Exposure'], axis = 1)
claims.head(10)

claims.describe()

Claim Amount Target Encoding

DriverAgeData['Avg. ClaimAmount'] = claims.groupby(['DriverAge']).mean()[['ClaimAmount']]
DriverAgeData['Vol. ClaimAmount'] = claims.groupby(['DriverAge']).std()[['ClaimAmount']]

CarAgeData['Avg. ClaimAmount'] = claims.groupby(['CarAge']).mean()[['ClaimAmount']]
CarAgeData['Vol. ClaimAmount'] = claims.groupby(['CarAge']).std()[['ClaimAmount']]

PowerData['Avg. ClaimAmount'] = claims.groupby(['Power']).mean()[['ClaimAmount']]
PowerData['Vol. ClaimAmount'] = claims.groupby(['Power']).std()[['ClaimAmount']]

BrandData['Avg. ClaimAmount'] = claims.groupby(['Brand']).mean()[['ClaimAmount']]
BrandData['Vol. ClaimAmount'] = claims.groupby(['Brand']).std()[['ClaimAmount']]

GasData['Avg. ClaimAmount'] = claims.groupby(['Gas']).mean()[['ClaimAmount']]
GasData['Vol. ClaimAmount'] = claims.groupby(['Gas']).std()[['ClaimAmount']]

RegionData['Avg. ClaimAmount'] = claims.groupby(['Region']).mean()[['ClaimAmount']]
RegionData['Vol. ClaimAmount'] = claims.groupby(['Region']).std()[['ClaimAmount']]

PowerSmplData['Avg. ClaimAmount'] = claims.groupby(['PowerSmpl']).mean()[['ClaimAmount']]
PowerSmplData['Vol. ClaimAmount'] = claims.groupby(['PowerSmpl']).std()[['ClaimAmount']]

BrandSmplData['Avg. ClaimAmount'] = claims.groupby(['BrandSmpl']).mean()[['ClaimAmount']]
BrandSmplData['Vol. ClaimAmount'] = claims.groupby(['BrandSmpl']).std()[['ClaimAmount']]

RegionSmplData['Avg. ClaimAmount'] = claims.groupby(['RegionSmpl']).mean()[['ClaimAmount']]
RegionSmplData['Vol. ClaimAmount'] = claims.groupby(['RegionSmpl']).std()[['ClaimAmount']]

cats = ['PowerSmpl', 'RegionSmpl', 'BrandSmpl']
catsT2 = [cat+'T2' for cat in cats]
tables = [PowerSmplData, RegionSmplData, BrandSmplData]
keys = [data.sort_values(by = 'Avg. ClaimAmount', ascending = False).index for data in tables]

Encodings2 = {cat:TargetEncoder(key) for (cat,key) in zip(catsT2,keys)}
print(Encodings2)

We assign new versions of our categorical variables and establish the target encoding for them
for i in range(len(cats)):
 freqs[catsT2[i]] = freqs[cats[i]]
freqs = freqs.replace(Encodings2)

claims = pd.merge(left = claims, right = freqs[catsT2], how = "left", left_index = True, right_ind
ex = True)

Target-Response encoding visualization

Bkeys = BrandData.sort_values(by = 'Avg. ClaimAmount', ascending = False).index
BrandEnc = TargetEncoder(Bkeys)
BrandEnc

BrandData[['Empirical Frequency']].sort_values(by='Empirical Frequency', ascending = False)

BrandEnc1Table = pd.DataFrame(data = list(Encodings['BrandT'].values()),
 index = list(Encodings['BrandT'].keys()), columns = ['Freqs. Response
-encoding'])
BrandEnc2Table = pd.DataFrame(data = list(BrandEnc.values()),

86

 index = list(BrandEnc.keys()), columns = ['Claims Response-encoding']
)
BrandEncTable = pd.merge(left = BrandEnc1Table, right = BrandEnc2Table, how='left', left_index = T
rue, right_index = True)
BrandEncTable

BrandData[['Avg. ClaimAmount']].sort_values(by='Avg. ClaimAmount', ascending = False)

claims.info()

Assesing Poisson assumption for number of claims

claimcountdistr = pd.DataFrame({'nº Policies':freqs.ClaimNb.value_counts().values, 'ClaimNb':freqs
.ClaimNb.value_counts().index})
claimcountdistr.set_index('ClaimNb')

mean = freqs['ClaimNb'].describe()['mean']
variance = freqs['ClaimNb'].describe()['std'] ** 2
print('Mean is {}'.format(round(mean, 5)))
print('Variance is {}'.format(round(variance, 5)))

variance/mean

Compute and print sample mean of the number of satellites: sat_mean
fr_mean = np.mean(freqs.ClaimNb)

print('Sample mean is', round(fr_mean, 3))

Compute and print sample variance of the number of satellites: sat_var
fr_var = np.var(freqs.ClaimNb)
print('Sample variance is', round(fr_var, 3))

Compute ratio of variance to mean
print('Variance on mean ratio is', round(fr_var/fr_mean, 3))

Feature preprocesing:

CarAge

outliers = freqs[freqs['CarAge'] > 50]
print('We will be deleating', sum(outliers['ClaimNb']), 'Claim Amounts and a total of', outliers.s
hape[0], 'observed Policies')

filterfreq = list(outliers.index.values)
freqs = freqs.drop(filterfreq)
freqs.shape

filtersev = list(outliers[outliers['ClaimNb']>0].index.values)
claims = claims.drop(filtersev)
claims.shape

DriverAge

threshold = 98
outliers =freqs[freqs['DriverAge'] > threshold]
print('We will be deleating', sum(outliers['ClaimNb']), 'Claim Amounts and a total of', outliers.s
hape[0], 'observed Policies')

freqs = freqs[freqs['DriverAge'] <= threshold]
freqs.shape

87

filtersev = list(outliers[outliers['ClaimNb']>0].index.values)
claims = claims.drop(filtersev)
claims.shape

Density

freqs['DensityS'].value_counts().sort_index()[-10:]

quants = np.append(np.arange(0.1, 1, 0.1), np.arange(0.95, 0.99, 0.01))
freqs['DensityS'].quantile(q=quants)

Categorical frequency dependency plots

def MarginalDPlot(dataset, feature, colors, response = "Empirical Frequency",
 xlims = None, ylims = None, size = (6,4), measure = "Exposure"):
 fig, ax = plt.subplots(figsize=size, dpi=100)

 # Plot the CO2 variable in blue
 ax.bar(dataset.index, dataset[response], label = response, color = colors)
 ax.grid(True)
 # ax.set_title("Average Claim Amounts and nº of reported Claims for each Driver Age", size = 1
0)
 ax.set_xlabel(feature, fontsize=10)
 ax.set_ylabel(response, fontsize=10)
 ax.set_ylim(ylims)
 ax.set_xlim(xlims)
 ax.yaxis.label.set_color('g')
 ax.tick_params(axis='y', colors='g')

 # Create a twin Axes that shares the x-axis
 ax2 = ax.twinx()
 # Plot the relative temperature in red
 if measure == "Exposure":
 ylabel = "Exposure Time"
 ycolor = "darkorange"
 else:
 ylabel = "nº Counts"
 ycolor = "steelblue"

 ax2.plot(dataset.index, dataset[measure], label = ylabel, color = ycolor, linestyle = ":", mar
ker = "o", markersize=4)
 ax2.legend(loc = 'best', bbox_to_anchor = (0.5, 0.5, 0.5, 0.5))
 ax2.tick_params(axis='y', colors=ycolor)

MarginalDPlot(dataset = DriverAgeData, colors = ["palegreen"], feature = "DriverAge", ylims = [0,
0.3])

MarginalDPlot(dataset = CarAgeData, colors = ["khaki"], feature = "CarAge", xlims = [0, 40], ylims
= [0, 0.2])

clspower = ["palegreen", "coral", "goldenrod", "turquoise", "firebrick",
 "darkorchid", "springgreen", "yellow", "plum", "olive", "mediumblue", "khaki"]
MarginalDPlot(dataset = PowerSmplData, colors = clspower, feature = "Power", ylims = [0, 0.1], siz
e = (7, 3))

clsbrand = ["palegreen", "yellow", "turquoise", "firebrick", "olive", "mediumblue", "khaki"]
MarginalDPlot(dataset = BrandData, colors = clsbrand, feature = "Brand", ylims = [0, 0.1], size =
(7, 3))

clsregion = ["goldenrod", "turquoise", "firebrick", "darkorchid", "springgreen", "yellow", "plum",
"olive", "mediumblue", "khaki"]
MarginalDPlot(dataset = RegionSmplData, colors = clsregion, feature = "Region", ylims = [0, 0.1],
size = (7, 3))

88

First GLM fitting trial

Frequencies

Import statsmodels
import statsmodels.api as sm
from statsmodels.formula.api import glm
from sklearn.model_selection import train_test_split as tts
seeds = [2802, 2303, 1410, 2105, 2403]
seed = 2802
freqs_train, freqs_test = tts(freqs, test_size = 0.2, random_state = seed)

pd.options.display.float_format = '{:.4f}'.format
print(f'The train set for frequencies has {freqs_train.shape[0]} instances')
freqs_train['ClaimNb'].value_counts(normalize=True)

print(f'The test set for frequencies has {freqs_test.shape[0]} instances')
freqs_test['ClaimNb'].value_counts(normalize=True)

model2 = glm('ClaimNb ~ CarAge + DriverAge', data = freqs_train, family = sm.families.Poisson(), e
xposure = np.asarray(freqs_train['Exposure'])).fit()

Print model summary
print(model2.summary())

Define model formula
formula2 = 'ClaimNb ~ CarAge + DriverAge + C(Gas)'

Fit GLM
model3 = glm(formula2, data = freqs_train, family = sm.families.Poisson(), exposure = np.asarray(f
reqs_train['Exposure'])).fit()

Print model summary
print(model3.summary())

Define model formula
formula3 = 'ClaimNb ~ CarAge + DriverAge + C(Gas) + C(Brand, Treatment(1))'

Fit GLM
model4 = glm(formula3, data = freqs_train, family = sm.families.Poisson(), exposure = np.asarray(f
reqs_train['Exposure'])).fit()

Print model summary
print(model4.summary())

from patsy import dmatrix
freqs_train_matrix = dmatrix('CarAge + DriverAge + C(Gas) + C(Brand, Treatment(1)) + C(RegionSmpl,
Treatment(2)) + C(PowerSmpl) + DensityS', data = freqs_train, return_type = 'dataframe')

from statsmodels.genmod.generalized_linear_model import GLM
Fit GLM
model7 = GLM(endog = freqs_train['ClaimNb'], exog = freqs_train_matrix, family = sm.families.Poiss
on(), exposure = freqs_train['Exposure']).fit()

Print model summary
print(model7.summary())

Testing and predicting Frequencies with the GLM

The following lists will compile the performance results and descriptions from all chosen models
modeltype = []
modeldesc = []
GEtype = []

89

modeltrainGE = []
modeltestGE = []

freqs_test_matrix = dmatrix('CarAge + DriverAge + C(Gas) + C(Brand, Treatment(1)) + C(RegionSmpl,
Treatment(2)) + C(PowerSmpl) + DensityS', data = freqs_test, return_type = 'dataframe')
freqs_test_matrix.shape

Custom made function to calculate Poisson Deviance from actual response 'y' and predictions.

def DevianceP(y_i, mu_i):
 D = np.empty(shape = y_i.shape[0])
 for i in range(y_i.shape[0]):
 if y_i[i] == 0:
 D[i] = mu_i[i] - y_i[i]
 else:
 D[i] = y_i[i] * np.log(y_i[i] / mu_i[i]) - (y_i[i] - mu_i[i])

 return(2 * sum(D))

freqs_fitted = model7.predict()
Dpois = DevianceP(freqs_train['ClaimNb'].values, freqs_fitted.values)
GEpoisGLMtrain = Dpois / freqs_train['ClaimNb'].shape[0]

modeltype.append('Frequency')
modeldesc.append('Optimal frequency GLM')
GEtype.append('Poisson')
modeltrainGE.append(round(GEpoisGLMtrain, 5))

print('Based on Train data: Deviance is', round(Dpois,2), 'and Generalization Error is', round(GEp
oisGLMtrain,5))

freqs_pred = model7.predict(exog = freqs_test_matrix, exposure = freqs_test['Exposure'])
Dpois = DevianceP(freqs_test['ClaimNb'].values, freqs_pred.values)
GEpoisGLMtest = Dpois / freqs_test['ClaimNb'].shape[0]

modeltestGE.append(round(GEpoisGLMtest, 5))

print('Based on Test data: Deviance is', round(Dpois,2), 'and Generalization Error is', round(GEpo
isGLMtest,5))

Severities

Analysis of the reported claims

Here we can obtain information about the distribution of Claim Amounts, and we do so by cheking
what proportion out of the whole claims record are above a specific threshold
claims1 = claims.copy()
threshold = 10_000
total = freMTPLsev.loc[freMTPLsev['ClaimAmount'] > threshold, 'ClaimAmount'].shape[0]
proportion = total /freMTPLsev.shape[0]
print('The proportion of claim amounts above', threshold, 'is', round(proportion, 5), 'with a tota
l of', total, 'claims')

def Proportion(df, feat, threshold):
 total = df.loc[df[feat] > threshold, feat].shape[0]
 proportion = total /df.shape[0]
 return proportion, total

thresholds = [4000, 10_000, 20_000, 70_000, 50_000, 100_000, 150_000, 200_000, 500_000, 1_000_000]
Props = np.empty(shape = len(thresholds))
Totals = np.empty(shape = len(thresholds))
i = 0

90

for thres in thresholds:
 Props[i], Totals[i] = Proportion(df = freMTPLsev, feat = 'ClaimAmount', threshold = thres)
 i += 1

DistrInfo = pd.DataFrame({'Amount Threshold':thresholds, 'Proportion Exceeding':Props, 'Total Exce
eding':Totals.astype(int)})

DistrInfo

threshold = 10_000
Prop, Total = Proportion(df = freMTPLsev, feat = 'ClaimAmount', threshold = threshold)
print('The proportion of claim amounts above', threshold, 'is', round(Prop, 5), 'with a total of',
Total, 'claims')

MarginalDPlot(dataset = DriverAgeData, colors = ["palegreen"], feature = "DriverAge",
 ylims = [0, 2000], response = "Avg. ClaimAmount", measure = "ClaimNb")

MarginalDPlot(dataset = CarAgeData, colors = ["khaki"], feature = "CarAge",
 xlims = [0, 40], ylims = [0, 1_700], response = "Avg. ClaimAmount", measure = "Claim
Nb", size = (5, 4))

clspower = ["palegreen", "coral", "goldenrod", "turquoise", "lightcoral", "khaki", "plum"]
MarginalDPlot(dataset = PowerSmplData, colors = clspower, feature = "PowerSmpl", ylims = [0, 1_700
], size = (7, 3),
 response = "Avg. ClaimAmount", measure = "ClaimNb")

clsbrand = ["palegreen", "coral", "goldenrod", "lightcoral", "khaki"]
MarginalDPlot(dataset = BrandData, colors = clsbrand, feature = "Brand", ylims = [0, 1_600], size
= (7, 3),
 response = "Avg. ClaimAmount", measure = "ClaimNb")

clsbrand = ["palegreen", "coral", "goldenrod", "turquoise", "lightcoral", "khaki", "plum"]
MarginalDPlot(dataset = RegionSmplData, colors = clsbrand, feature = "RegionSmpl", ylims = [0, 1_6
00], size = (7, 3),
 response = "Avg. ClaimAmount", measure = "ClaimNb")

clsgas = ["khaki", "lightcoral"]
MarginalDPlot(dataset = GasData, colors = clsgas, feature = "Gas", ylims = [0, 1_600], size = (5,
3),
 response = "Avg. ClaimAmount", measure = "ClaimNb")

fig, ax = plt.subplots(figsize=(6, 3), dpi=100)

Plot the CO2 variable in blue
ax.hist(claims1['Frequency'], label = "Frequency distribution", bins = 1000, color = ["turquoise"]
)
ax.grid(True)
ax.set_title("Average Claim Amounts and nº of reported Claims for each Driver Age", size = 10)
ax.set_xlabel("Frequency", fontsize=10)
ax.set_ylabel("Frequency distribution", fontsize=10)
ax.set_xlim([0, 15])

What are the highest claims? Could they affect the modelling process?

print('Frequency is equal or higher that 1 in {:.2%} of instances'.format(claims1[claims1['Frequen
cy']>=1].shape[0] / claims1['Frequency'].shape[0]))
print('Frequency is equal or higher that 1 in {:.2%} of instances'.format(freqs_test[freqs_test['F
requency']>=1].shape[0] / freqs_test['Frequency'].shape[0]))

%matplotlib widget
%matplotlib inline
import matplotlib.pyplot as plt

Initalize a Figure and Axes

91

fig, ax = plt.subplots(figsize=(8, 4), dpi=100)
Empirical Frequency
Plot the CO2 variable in blue
ax.hist(claims['ClaimAmount'], bins = 100, color = "b")
ax.set_xlim([0, 10000])
ax.grid(True)
ax.set_title("Average Claim Amounts and nº of reported Claims for each Driver Age", size = 10)
ax.set_xlabel("Claim Amount (euros)", fontsize=10)

Based on the train-test split peformed on freqs table, we must split the claims table accordingl
y to the claim Amounts contained in both resulting parts from freqs.
claims_train = pd.merge(left = claims1['ClaimAmount'], right = freqs_train, how = "inner", left_in
dex = True, right_index = True)
claims_train = claims_train.drop(['ClaimNb','Exposure'], axis = 1)

claims_test = pd.merge(left = claims1['ClaimAmount'], right = freqs_test, how = "inner", left_inde
x = True, right_index = True)
claims_test = claims_test.drop(['ClaimNb','Exposure'], axis = 1)
claims_train.describe()

claims_test.describe()

claims_train.shape[0]/claims1.shape[0] + claims_test.shape[0]/claims1.shape[0]

from statistics import mean
from statistics import variance as var

media = mean(claims1['ClaimAmount'].values)
varianza = var(claims1['ClaimAmount'])
print('The mean equals', media)
print('The variance equals', round(varianza, 3), 'and the standard deviation equals', round(varian
za ** (1/2), 3))

GLM training for claims

claims_train_matrix1 = dmatrix('CarAge + DriverAge + Frequency', data = claims_train, return_type
= 'dataframe')
models1 = GLM(endog = claims_train['ClaimAmount'], exog = claims_train_matrix1, family = sm.famili
es.Gamma(link = sm.families.links.log)).fit()
print(models1.summary())
Can we add any more significant variables to the model?

freqs_train.loc[freqs_train['ClaimNb']>0,'ClaimNb'].value_counts()

sevF = 'CarAge + C(DriverAgeB, Treatment(1)) + Frequency'
claims_train_matrix2 = dmatrix(sevF, data = claims_train, return_type = 'dataframe')
models2 = GLM(endog = claims_train['ClaimAmount'], exog = claims_train_matrix2, family = sm.famili
es.Gamma(link = sm.families.links.log)).fit()
print(models2.summary())

sevF = 'CarAge + C(DriverAgeB, Treatment(1)) + PowerSmplT2 + RegionSmplT2 + DensityS + Frequency
'
sevF1 = 'CarAge + C(DriverAgeB, Treatment(1)) + PowerSmplT + RegionSmplT + DensityS'
claims_train_matrix3 = dmatrix(sevF1, data = claims_train, return_type = 'dataframe')
models3 = GLM(endog = claims_train['ClaimAmount'], exog = claims_train_matrix3, family = sm.famili
es.Gamma(link = sm.families.links.log)).fit()
print(models3.summary())

Predicting and testing Claims with the GLM

claims_test_matrix = dmatrix(sevF, data = claims_test, return_type = 'dataframe')
claims_test_matrix1 = dmatrix(sevF1, data = claims_test, return_type = 'dataframe')
claims_test_matrix.shape

def DevianceG(y_i, mu_i):
 D = np.empty(shape = y_i.shape[0])
 for i in range(y_i.shape[0]):
 D[i] = - np.log(y_i[i] / mu_i[i]) + (y_i[i] - mu_i[i]) / mu_i[i]

92

 return(2 * sum(D))

Train set predictions

claims_fitted = models2.predict()
Dgamma = DevianceG(claims_train['ClaimAmount'].values, claims_fitted)
GEgammaGLMtrain = Dgamma / claims_train['ClaimAmount'].shape[0]

modeltype.append('Severity')
modeldesc.append('Optimal severity GLM')
GEtype.append('Gamma')
modeltrainGE.append(round(GEgammaGLMtrain, 5))

print('Based on Train data: Deviance is', round(Dgamma, 2), 'and Generalization Error is', round(G
EgammaGLMtrain, 5))

claims_fitted1 = models3.predict()
Dgamma1 = DevianceG(claims_train['ClaimAmount'].values, claims_fitted1)
GEgammaGLMtrain1 = Dgamma1 / claims_train['ClaimAmount'].shape[0]

modeltype.append('Severity')
modeldesc.append('Optimal Alt. severity GLM')
GEtype.append('Gamma')
modeltrainGE.append(round(GEgammaGLMtrain1, 5))

print('Based on Train data: Deviance is', round(Dgamma1,2), 'and Generalization Error is', round(G
EgammaGLMtrain1, 5))

print(f'Average claim amount is {claims_train.ClaimAmount.mean():.6}€')

print(f'Average fitted claim amounts for optimal GLM is {claims_fitted.mean():.6}€')
print(f'Average fitted claim amounts for alternative optimal GLM is {claims_fitted1.mean():.6}€')

Test set predictions

claims_pred = models2.predict(exog = claims_test_matrix)
Dgamma = DevianceG(claims_test['ClaimAmount'].values, claims_pred.values)
GEgammaGLMtest = Dgamma / claims_test['ClaimAmount'].shape[0]

modeltestGE.append(round(GEgammaGLMtest, 5))

print('Based on Test data: Deviance is', round(Dgamma,2), 'and Generalization Error is', round(GEg
ammaGLMtest, 5))

claims_pred1 = models3.predict(exog = claims_test_matrix1)
Dgamma1 = DevianceG(claims_test['ClaimAmount'].values, claims_pred1.values)
GEgammaGLMtest1 = Dgamma1 / claims_test['ClaimAmount'].shape[0]

modeltestGE.append(round(GEgammaGLMtest1, 5))

print('Based on Test data: Deviance is', round(Dgamma1,2), 'and Generalization Error is', round(GE
gammaGLMtest1, 5))

print(f'Average claim amount is {claims_test.ClaimAmount.mean():.6}€')

print(f'Average test predicted claim amounts for optimal GLM is {claims_pred.mean():.6}€')
print(f'Average test predicted claim amounts for alternative optimal GLM is {claims_pred1.mean():.
6}€')

Loss Costing with GLMs

freqs_test1 = freqs_test.copy()

def PricingGLM(test, freqGLM, sevGLM, freqFormula, sevFormula):
 # The test data has to be rearranged into the two different GLM models matrices following thei
r feature specification

93

 freq_matrix = dmatrix(freqFormula, data = test, return_type = 'dataframe')
 sev_matrix = dmatrix(sevFormula, data = test, return_type = 'dataframe')

 # The GLMs must make their predictions for both frequencies and severities
 freq_pred = freqGLM.predict(exog = freq_matrix, exposure = test['Exposure'])
 sev_pred = sevGLM.predict(exog = sev_matrix)

 # Once we have the predictions, we can easily compute the pure premium
 pure_premium = freq_pred * sev_pred
 return freq_pred, sev_pred, pure_premium

freqF = 'CarAge + DriverAge + C(Gas) + C(Brand, Treatment(1)) + C(RegionSmpl, Treatment(2)) + C(Po
werSmpl) + DensityS'

We aggregate the loss incurred by each policy, so that we can join this information with the fre
qs table
AggregatedLoss = claims.groupby(level = 0).sum()['ClaimAmount']
We initiate the PremiumAnalysis table, were the summary information will be compiled
PremAnalysisGLM = freqs_test1[['ClaimNb', 'Exposure']].copy()
We perform the joint with PremiumAnalysis as the target
PremAnalysisGLM = pd.merge(PremAnalysisGLM, AggregatedLoss, how = 'left', left_index = True, right
_index = True)
PremAnalysisGLM.fillna(0, inplace = True)
PremAnalysisGLM = PremAnalysisGLM.rename(columns = {'ClaimAmount':'Aggregated Loss'})
PremAnalysisGLM['Pred. Frequency'], PremAnalysisGLM['Pred. Severity'], PremAnalysisGLM['Pure Premi
um'] = PricingGLM(freqs_test1, freqGLM = model7, sevGLM = models3, freqFormula = freqF, sevFormula
= sevF1)

Premium Analysis table

PremAnalysisGLM['Anual Pure Prem.'] = PremAnalysisGLM['Pure Premium'] / PremAnalysisGLM['Exposure'
]
PremAnalysisGLM.iloc[15:23]

PremAnalysisGLM.describe()

Single profile prediction

original_feat = list(freqs0.columns)
del(original_feat[0:1])
del(original_feat[-3:])
print(original_feat)

seed = 2303
freqs_test1.iloc[[seed]][original_feat]

PremAnalysisGLM.iloc[[seed]][['Pred. Frequency', 'Pred. Severity', 'Pure Premium', 'Anual Pure Pre
m.']]

Gradient Boosting Model Fitting

GBRT for Frequencies

There are some basic imports that are worth having at our disposal
from datetime import datetime
from sklearn import metrics
from sklearn.model_selection import StratifiedKFold
import seaborn as sns
import lightgbm as lgb

from pdpbox import pdp, get_dataset, info_plots

Only the original set of features will be tested in the first LightGBM example, this configurati
on can be rearranged afterwards
initial_conf = ['ClaimNb', 'Exposure', 'PowerT', 'CarAge', 'DriverAge', 'BrandT', 'GasT', 'RegionT
', 'DensityS']
advanced_conf = ['ClaimNb', 'Exposure', 'PowerSmplT', 'CarAge', 'DriverAge', 'BrandT', 'GasT', 'Re

94

gionSmplT', 'DensityS']
We will apply this feature configuration to the train set, and if we decide to finally test the
model, then we will have to do the same in the test set
freqs_train2 = freqs_train.copy()
freqs_train2 = freqs_train2[initial_conf]

The implementation of GBM models requires arranging the data in the following structure:
freqs_train2_y = freqs_train2['ClaimNb'].values / freqs_train2['Exposure'].values
freqs_train2_w = freqs_train2['Exposure'].values
freqs_train2_X = freqs_train2.drop(['ClaimNb', 'Exposure'], axis = 1)
#LightGBM requieres to convert our categoricals into integers that is why we select the versions o
f categoricals ending in T

freqs_train2_y.shape

We will use the sklearn API for lightGBM for better compatibility with related tools
seed = 1008
start=datetime.now()
GBMmodel = lgb.LGBMRegressor(max_depth = 4, learning_rate = 0.05, n_estimators = 200,
 objective = "poisson", min_child_samples = 1000,
 importance_type = "gain", random_state = seed)
GBMmodel.fit(freqs_train2_X, freqs_train2_y, sample_weight = freqs_train2_w)
stop=datetime.now()
execution_time_lgbm = stop-start

Sample weights are correctly taken into account

print("LightGBM execution time is: ", execution_time_lgbm)

GBMmodel.feature_importances_

Predicting with LightGBM for frequecies

freqs_test2 = freqs_test.copy()
freqs_test2 = freqs_test2[initial_conf]
freqs_test2_y = freqs_test2['ClaimNb'].values
freqs_test2_w = freqs_test2['Exposure'].values
freqs_test2_X = freqs_test2.drop(['ClaimNb', 'Exposure'], axis = 1)
freqs_test2_X = freqs_test2_X.replace(cat_to_int)
#, weight = freqs_train2_w
fitted_y = GBMmodel.predict(freqs_train2_X)
pred_y = GBMmodel.predict(freqs_test2_X)

freqs_test2_X.info()

av_em_frq = sum(freqs_train['ClaimNb']) / sum(freqs_train['Exposure'])
print(av_em_frq)
print(mean(freqs_train['ClaimNb']))

A table for the comparison between predictions both from GLM and for GBM models in the test sets
:
freqs_test_results = freqs_test2[['ClaimNb', 'Exposure']]
freqs_test_results['GLM prediction'] = freqs_pred
freqs_test_results['GBM prediction'] = pred_y * freqs_test2_w
The same table but for fitted values from the test set:
freqs_train_results = freqs_train2[['ClaimNb', 'Exposure']]
freqs_train_results['GLM prediction'] = freqs_fitted
freqs_train_results['GBM prediction'] = fitted_y * freqs_train2_w

Ratios for Train set

av_em_frq = sum(freqs_train_results['ClaimNb']) / sum(freqs_train_results['Exposure'])
#av_em_frq = mean(freqs_train_results['ClaimNb'] / freqs_train_results['Exposure'])
print('Average empirical frequency', round(av_em_frq, 6))
av_GLM_frq = sum(freqs_train_results['GLM prediction']) / sum(freqs_train_results['Exposure'])
print('Average GLM frequency', round(av_GLM_frq, 6))

95

av_GBM_frq = sum(freqs_train_results['GBM prediction']) / sum(freqs_train_results['Exposure'])
print('Average GBM frequency', round(av_GBM_frq, 6))

print(mean(freqs_test_results['Exposure']))
print(av_GBM_frq/av_GLM_frq)

Ratios for Test set

av_em_frq = sum(freqs_test_results['ClaimNb']) / sum(freqs_test_results['Exposure'])
#av_em_frq = mean(freqs_train_results['ClaimNb'] / freqs_train_results['Exposure'])
print('Average empirical frequency', round(av_em_frq, 4))
av_GLM_frq = sum(freqs_test_results['GLM prediction']) / sum(freqs_test_results['Exposure'])
print('Average GLM frequency', round(av_GLM_frq, 6))
av_GBM_frq = sum(freqs_test_results['GBM prediction']) / sum(freqs_test_results['Exposure'])
print('Average GBM frequency', round(av_GBM_frq, 6))

Prediction comparison table between GLM and GBM model

freqs_train_results.sum()

freqs_test_results.sum()

 # Performance results

Dpois = DevianceP(freqs_train_results['ClaimNb'].values, freqs_train_results['GBM prediction'].val
ues)
GEpois = Dpois / freqs_train_results['ClaimNb'].shape[0]
print('Based on Train data: Deviance is', round(Dpois,2), 'and Generalization Error is', round(GEp
ois,5))

Dpois = DevianceP(freqs_test_results['ClaimNb'].values, freqs_test_results['GBM prediction'].value
s)
GEpois = Dpois / freqs_test_results['ClaimNb'].shape[0]
print('Based on Test data: Deviance is', round(Dpois,2), 'and Generalization Error is', round(GEpo
is,5))

Feature importance

import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

sorted(zip(clf.feature_importances_, X.columns), reverse=True)

importances = GBMmodel.feature_importances_ / max(GBMmodel.feature_importances_)

feature_imp = pd.DataFrame(sorted(zip(importances, GBMmodel.feature_name_)),

columns=['Value','Feature'])

plt.figure(figsize=(10, 5))

plt.grid(True)

sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False))

plt.title('LightGBM Features')

plt.xlabel('Percentage (%) of total deviance reduction')

plt.tight_layout()

plt.show()

Basic Tree visualization

import os

os.environ["PATH"] += os.pathsep + 'C:/ProgramData/Anaconda3/Library/bin/graphviz/'

lgb.plot_tree(GBMmodel, tree_index = 0, show_info = ["internal_value", "leaf_count", "split_gain"]
, figsize=(10, 6), dpi = 150, orientation = 'horizontal')

np.exp(-2.685)

96

lgb.plot_split_value_histogram(GBMmodel, feature = "DriverAge", width_coef = 0.8)
plt.title('DriverAge value-split counts')

lgb.plot_split_value_histogram(GBMmodel, feature = "DensityS", width_coef = 2)
plt.title('DensityS value-split counts')

Quick GBM training and performance evaluation

freqs_train2_X['Rand'] = [random.random() for i in range(freqs_train2_X.shape[0])]
start=datetime.now()
GBMmodel0 = lgb.LGBMRegressor(max_depth = 5, learning_rate = 0.05, n_estimators = 200,
 objective = "poisson", min_child_samples = 1000,
 feature_fraction = 0.6, importance_type = "gain", random_state = seed
)
GBMmodel0.fit(freqs_train2_X, freqs_train2_y, sample_weight = freqs_train2_w)

fitted_y = GBMmodel0.predict(freqs_train2_X)
pred_y = GBMmodel0.predict(freqs_test2_X)

freqs_train_results['GBM prediction'] = fitted_y * freqs_train2_w
freqs_test_results['GBM prediction'] = pred_y * freqs_test2_w

Dpoistrain = DevianceP(freqs_train_results['ClaimNb'].values, freqs_train_results['GBM prediction'
].values)
GEpoisGBMtrain = Dpoistrain / freqs_train_results['ClaimNb'].shape[0]
Dpoistest = DevianceP(freqs_test_results['ClaimNb'].values, freqs_test_results['GBM prediction'].v
alues)
GEpoisGBMtest = Dpoistest / freqs_test_results['ClaimNb'].shape[0]

end=datetime.now()
runtime = end - start
print("total run time was:", runtime)
print('Based on Train data: Deviance is', round(Dpoistrain,2), 'and Generalization Error is', roun
d(GEpoisGBMtrain,5))
print('Based on Test data: Deviance is', round(Dpoistest,2), 'and Generalization Error is', round(
GEpoisGBMtest,5))

modeltype.append('Frequency')
modeldesc.append('Fine-tunned frequency GBM')
GEtype.append('Poisson')
modeltrainGE.append(round(GEpoisGBMtrain, 5))
modeltestGE.append(round(GEpoisGBMtest, 5))

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

sorted(zip(clf.feature_importances_, X.columns), reverse=True)
importances = GBMmodel0.feature_importances_ / max(GBMmodel0.feature_importances_)
feature_imp = pd.DataFrame(sorted(zip(importances, GBMmodel0.feature_name_)), columns=['Value','Fe
ature'])

plt.figure(figsize=(10, 5))
plt.grid(True)
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False))

plt.title('LightGBM Features')
plt.xlabel('Percentage (%) of total deviance reduction')
plt.tight_layout()
plt.show()

lgb.plot_split_value_histogram(GBMmodel0, feature = "CarAge", width_coef = 1)

Cross Validation through early stopping

from sklearn.metrics import make_scorer

from sklearn.model_selection import cross_val_score

97

%%capture
from sklearn.model_selection import KFold

GBMmodelCV = lgb.LGBMRegressor(max_depth = 5, learning_rate = 0.05, n_estimators = 200,
 objective = "poisson", min_child_samples = 1000,
 feature_fraction = 0.4, importance_type = "gain", random_state = seed
)
kf = KFold(n_splits=5, shuffle=True)
GEpoisCV = []
predicts = []
start=datetime.now()
for train_index, test_index in kf.split(freqs_train2_X, freqs_train2_y):
 print("###")
 X_train, X_val = freqs_train2_X.iloc[train_index], freqs_train2_X.iloc[test_index]
 y_train, y_val = freqs_train2_y[train_index], freqs_train2_y[test_index]
 w_train, w_val = freqs_train2_w[train_index], freqs_train2_w[test_index]
 GBMmodelCV.fit(X_train, y_train, sample_weight = w_train, eval_set=[(X_val, y_val)],
 early_stopping_rounds=25)
 eval_pred = GBMmodelCV.predict(X_val) * w_val
 y_val = y_val * w_val
 Dpois = DevianceP(y_val, eval_pred)
 GEpoisCV.append(Dpois / y_val.shape[0])
 predicts.append(GBMmodelCV.predict(freqs_test2_X))

end=datetime.now()
runtime = end - start
print("total run time was:", runtime.total_seconds())

print("total run time for GBM with 5-CV was:", runtime)
print("average eval GE is:", round(mean(GEpoisCV), 5))

Hyper-parameter tunning for GBM frequencies

The dictionary helps to compile the different values for the hyperparameters that we will be tes
ting
params_dt = {
 'learning_rate': [0.05, 0.02, 0.01, 0.005],
 'n_estimators': [200, 500, 700, 1000],
 'max_depth': [4, 5, 6]
}

Now we will define the function that will do the whole process of K-fold cross-validation for a
GBM model with
a different set of hyperparameters, all of it based on our training information
def HyperpTrialGBM(nfolds, X, y, sample_weights, l_rate = 0.01, n_est = 1000, max_d = 5, frac_ft =
0.6):

 seed = 2802
 GBMmodel1 = lgb.LGBMRegressor(max_depth = max_d, learning_rate = l_rate, n_estimators = n_est,
 objective = 'poisson', min_child_samples = 1000,
 feature_fraction = frac_ft, importance_type = "gain", random_state =
seed)

 kf = KFold(n_splits=nfolds, shuffle=False)
 GEpoisCV = []
 start=datetime.now()

 for train_index, test_index in kf.split(X, y):

 X_train, X_val = X.iloc[train_index], X.iloc[test_index]
 y_train, y_val = y[train_index], y[test_index]
 w_train, w_val = sample_weights[train_index], sample_weights[test_index]

 GBMmodel1.fit(X_train, y_train, sample_weight = w_train,
 eval_set=[(X_val, y_val)], early_stopping_rounds=20)
 eval_pred = GBMmodel1.predict(X_val) * w_val

98

 y_val = y_val * w_val
 Dpois = DevianceP(y_val, eval_pred)
 GEpoisCV.append(Dpois / y_val.shape[0])

 GEpoisCVav = mean(GEpoisCV)
 end=datetime.now()
 runtime = end - start

 return GEpoisCVav, runtime

%%capture
Initiate the list for Generalization Error, and then also for run time
GEs = []
runtimes = []
l_rate = []
n_estimators = []
max_d = []

for i in params_dt['learning_rate']:
for j in params_dt['n_estimators']:
for l in params_dt['max_depth']:
GE, time = HyperpTrialGBM(nfolds = 5, X = freqs_train2_X, y = freqs_train2_y,
sample_weights = freqs_train2_w, l_rate = i, n_est = j, ma
x_d = l)
GEs.append(GE)
runtimes.append(time)
l_rate.append(i)
n_estimators.append(j)
max_d.append(l)

runtimes0 = runtimes.copy()
runtimes1 = [round(time.total_seconds(),2) for time in runtimes0]

TunningResults = pd.DataFrame({'Learning Rate':l_rate, 'nº Estimators':n_estimators, 'Max. Depth
':max_d,
'Validation GE':GEs, 'Run Time (secs.)':runtimes1})
TunningResults = TunningResults.set_index(['Learning Rate', 'nº Estimators', 'Max. Depth'])

TunningResults.head(12)

print('Total runtime of grid search was {}'.format(round(TunningResults['Run Time (secs.)'].sum(
)/60, 2)), 'minutes')

TunningResults.sort_values(by = "Validation GE").head()

Optimal = TunningResults['Validation GE'].idxmin(axis = 1)
Chosen = TunningResults.sort_values(by = "Validation GE").index[1]
TunningResults['Validation GE'].min()
print(Chosen)

print('The best performing GBM model has learning rate', Optimal[0],
', nº of trees', Optimal[1], 'and maximum depth', Optimal[2])
print('The second best GBM model will be that with learning rate', Chosen[0], ', nº of trees', C
hosen[1],
'and maximum depth', Chosen[2])

Fine-tunning for Stochastic GBM

params_dt = {
'feature_fraction': [0.4, 0.6, 0.8, 1]
}

%%capture
GEs = []

99

runtimes = []

for i in params_dt['feature_fraction']:
GE, time = HyperpTrialGBM(nfolds = 5, X = freqs_train2_X, y = freqs_train2_y,
sample_weights = freqs_train2_w, l_rate = Chosen[0],
n_est = Chosen[1], max_d = Chosen[2], frac_ft = i)
GEs.append(GE)
runtimes.append(time)

for i in range(len(params_dt['feature_fraction'])):
print("Total run time for optimal GBM with feature_fraction = {} was:".format(params_dt['fea
ture_fraction'][i]), runtimes[i], "while eval GE is:", round(GEs[i], 6))
print("")
for i in range(len(params_dt['feature_fraction'])):
print("Total run time for second optimal GBM with feature_fraction = {} was:".format(params_
dt['feature_fraction'][i]), runtimes[i+4], "while eval GE is:", round(GEs[i+4], 7))

runtimes1 = [round(time.total_seconds(),2) for time in runtimes]
sTunningResults = pd.DataFrame({'Feature fraction':params_dt['feature_fraction'],
'Validation GE':GEs, 'Run Time (secs.)':runtimes1})
sTunningResults = sTunningResults.set_index(['Feature fraction'])

sTunningResults

Partial Dependency Plots

from pdpbox import pdp, get_dataset, info_plots

params = {
 # plot title and subtitle
 # matplotlib color map for ICE lines
'linestyle': ":",
 'line_cmap': 'Blues',
 # pdp line color, highlight color and line width
 'pdp_color': '#1A4E5D',
 'pdp_hl_color': '#FEDC00',
 'pdp_linewidth': 2,
 # horizon zero line color and with
 'zero_color': '#E75438',
 'zero_linewidth': 1,
 # pdp std fill color and alpha
 'fill_color': '#66C2D7',
 'fill_alpha': 0.1,
 # marker size for pdp line
 'markersize': 6

}

def PDPlot(model, feature, trainset, xlims = None, ylims = None, n_grid = 25):
 pdp_dist = pdp.pdp_isolate(model=model, dataset=trainset
 , model_features=trainset.columns, num_grid_points = n_grid
 , feature=feature)

 fig, axes = pdp.pdp_plot(pdp_dist, feature, center = False, plot_params = params, figsize = (8
, 6))
 axes['pdp_ax'].set_ylim(ylims)
 axes['pdp_ax'].set_xlim(xlims)
 axes['pdp_ax'].set_xlabel("", fontsize=15)
 axes['pdp_ax'].set_title(f'PDP for feature {feature}', fontsize=15)
 axes['pdp_ax'].tick_params(axis='both', labelsize=15)

PDPdriverage = PDPlot(GBMmodel0, 'DriverAge', freqs_train2_X, ylims = [0.04, 0.30])

PDPcarage = PDPlot(GBMmodel0, 'CarAge', freqs_train2_X, ylims = [0.03, 0.12], xlims = [0, 25])

100

PDPcarage = PDPlot(GBMmodel0, 'DensityS', freqs_train2_X, ylims = [0.04, 0.13], n_grid = 20)

start = datetime.now()
PDPcarage = PDPlot(GBMmodel0, 'DensityS', freqs_train2_X, ylims = [0.04, 0.13], xlims = [0, 5],
n_grid = 20)
end = datetime.now()
time = end - start
print('Total runtime was {}'.format(time))

pdp_dist1 = pdp.pdp_isolate(model=GBMmodel0, dataset=freqs_train2_X
, model_features=freqs_train2_X.columns, num_grid_points = 7, grid_ty
pe = 'equal'
, feature='BrandT')

fig, axes = pdp.pdp_plot(pdp_dist1, 'BrandT', center = False, plot_params = params, figsize = (8
, 6))
axes['pdp_ax'].set_ylim([0.04, 0.12])
axes['pdp_ax'].set_xlabel("", fontsize=15)
axes['pdp_ax'].set_title('PDP for feature Brand with Target Encoding', fontsize=15)
axes['pdp_ax'].set_xticklabels(labels = list(Encodings['RegionT'].keys()))
axes['pdp_ax'].tick_params(axis='both', labelsize=15)

pdp_dist2 = pdp.pdp_isolate(model=GBMmodel0, dataset=freqs_train2_X
, model_features=freqs_train2_X.columns, num_grid_points = 12, grid_t
ype = 'equal'
, feature='PowerT')

import matplotlib.ticker as ticker
fig, axes = pdp.pdp_plot(pdp_dist2, 'PowerT', center = False, plot_params = params, figsize = (8
, 6))
axes['pdp_ax'].set_ylim([0.03, 0.15])
axes['pdp_ax'].set_xlabel("", fontsize=15)
axes['pdp_ax'].set_title('PDP for feature Power with Target Encoding', fontsize=15)
axes['pdp_ax'].xaxis.set_ticks(np.arange(0, 12, 1))
axes['pdp_ax'].set_xticklabels(labels = list(Encodings['PowerT'].keys()))

axes['pdp_ax'].tick_params(axis='both', labelsize=15)

pdp_dist3 = pdp.pdp_isolate(model=GBMmodel0, dataset=freqs_train2_X
, model_features=freqs_train2_X.columns, num_grid_points = 2, grid_ty
pe = 'equal'
, feature='GasT')

fig, axes = pdp.pdp_plot(pdp_dist3, 'GasT', center = False, plot_params = params, figsize = (8,
6))
axes['pdp_ax'].set_ylim([0.04, 0.12])
axes['pdp_ax'].set_xlim([-0.3, 1.3])
axes['pdp_ax'].set_xlabel("", fontsize=15)
axes['pdp_ax'].set_title('PDP for feature Gas with Target Encoding', fontsize=15)
axes['pdp_ax'].xaxis.set_ticks(np.arange(0, 12, 1))
axes['pdp_ax'].set_xticklabels(labels = list(Encodings['GasT'].keys()))

axes['pdp_ax'].tick_params(axis='both', labelsize=15)

pdp_dist4 = pdp.pdp_isolate(model=GBMmodel0, dataset=freqs_train2_X
, model_features=freqs_train2_X.columns, num_grid_points = 10, grid_t
ype = 'equal'
, feature='RegionT')

import matplotlib.ticker as ticker
fig, axes = pdp.pdp_plot(pdp_dist4, 'RegionT', center = False, plot_params = params, figsize = (
8, 6))
axes['pdp_ax'].set_ylim([0.03, 0.12])
axes['pdp_ax'].set_xlabel("", fontsize=15)

101

axes['pdp_ax'].set_title('PDP for feature Region with Target Encoding', fontsize=15)
axes['pdp_ax'].xaxis.set_ticks(np.arange(0, 10, 1))
axes['pdp_ax'].set_xticklabels(labels = list(Encodings['RegionT'].keys()))

axes['pdp_ax'].tick_params(axis='both', labelsize=15)

GBRT for Claim Amounts

advanced_conf = ['ClaimAmount', 'CarAge', 'DriverAge', 'PowerSmplT2', 'RegionSmplT2', 'DensityS',
'Frequency']
claims_train2 = claims_train[advanced_conf]
claims_test2 = claims_test[advanced_conf]
import random
claims_train2['Rand'] = [random.random() for i in range(claims_train2.shape[0])]

claims_train2.describe()

The implementation of GBM models requires arranging the data in the following structure:
claims_train2_y = claims_train2['ClaimAmount'].values
claims_train2_X = claims_train2.drop(['ClaimAmount'], axis = 1)
#LightGBM requieres to convert our categoricals into integers that is why we select the versions o
f categoricals ending in T

claims_train2_X.shape

We will use the sklearn API for lightGBM for better compatibility with related tools
seed = 2303
start=datetime.now()
GBMmodelS0 = lgb.LGBMRegressor(max_depth = 2, learning_rate = 0.02, n_estimators = 500,
 objective = "gamma", min_child_samples = 100,
 importance_type = "gain", random_state = seed)
GBMmodelS0.fit(claims_train2_X, claims_train2_y)
stop=datetime.now()
execution_time_lgbm = stop-start

Sample weights are correctly taken into account
print("LightGBM execution time is: ", execution_time_lgbm)

lgb.plot_tree(GBMmodelS0, tree_index = 0, show_info = ["internal_value", "leaf_count"], figsize=(8
, 4), dpi = 100, orientation = 'horizontal')

sorted(zip(clf.feature_importances_, X.columns), reverse=True)
importances = GBMmodelS0.feature_importances_ / max(GBMmodelS0.feature_importances_)
feature_imp = pd.DataFrame(sorted(zip(importances, GBMmodelS0.feature_name_)), columns=['Value','F
eature'])

plt.figure(figsize=(10, 5))
plt.grid(True)
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False))

plt.title('LightGBM Features')
plt.xlabel('Percentage (%) of total deviance reduction')
plt.tight_layout()
plt.show()

last_conf = ['ClaimAmount', 'CarAge', 'DriverAge', 'DensityS', 'Frequency']
claims_train2 = claims_train[last_conf]
claims_test2 = claims_test[last_conf]

The implementation of GBM models requires arranging the data in the following structure:
claims_train2_y = claims_train2['ClaimAmount'].values
claims_train2_X = claims_train2.drop(['ClaimAmount'], axis = 1)
#LightGBM requieres to convert our categoricals into integers that is why we select the versions o
f categoricals ending in T

102

claims_train2_X

Quick GBM fitting

start=datetime.now()
seeed = 1410
GBMmodelS = lgb.LGBMRegressor(max_depth = 1, learning_rate = 0.02, n_estimators = 500,
 objective = "gamma", feature_fraction = 0.8,
 importance_type = "gain", random_state = seed)
GBMmodelS.fit(claims_train2_X, claims_train2_y)
stop=datetime.now()
execution_time_lgbm = stop-start

sorted(zip(clf.feature_importances_, X.columns), reverse=True)
importances = GBMmodelS.feature_importances_ / max(GBMmodelS.feature_importances_)
feature_imp = pd.DataFrame(sorted(zip(importances, GBMmodelS.feature_name_)), columns=['Value','Fe
ature'])

plt.figure(figsize=(10, 5))
plt.grid(True)
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False))

plt.title('LightGBM Features')
plt.xlabel('Percentage (%) of total deviance reduction')
plt.tight_layout()
plt.show()

lgb.plot_tree(GBMmodelS, tree_index = 0, show_info = ["internal_value", "leaf_count"], figsize=(4,
2), dpi = 100, orientation = 'horizontal')
lgb.plot_tree(GBMmodelS, tree_index = 498, show_info = ["internal_value", "leaf_count"], figsize=(
4, 2), dpi = 100, orientation = 'horizontal')
lgb.plot_tree(GBMmodelS, tree_index = 1, show_info = ["internal_value", "leaf_count"], figsize=(4,
2), dpi = 100, orientation = 'horizontal')
lgb.plot_tree(GBMmodelS, tree_index = 499, show_info = ["internal_value", "leaf_count"], figsize=(
4, 2), dpi = 100, orientation = 'horizontal')

Alternative GBM fitting for claim amounts

last_conf1 = ['ClaimAmount', 'CarAge', 'DriverAge', 'DensityS']
claims_train3 = claims_train[last_conf1]
claims_test3 = claims_test[last_conf1]

claims_train3_y = claims_train3['ClaimAmount'].values
claims_train3_X = claims_train3.drop(['ClaimAmount'], axis = 1)

start=datetime.now()
seeed = 1410
GBMmodelS1 = lgb.LGBMRegressor(max_depth = 1, learning_rate = 0.02, n_estimators = 500,
 objective = "gamma", feature_fraction = 1,
 importance_type = "gain", random_state = seed)
GBMmodelS1.fit(claims_train3_X, claims_train3_y)
stop=datetime.now()
execution_time_lgbm = stop-start

Predicting with LightGBM for severities

claims_test2_y = claims_test2['ClaimAmount'].values
claims_test2_X = claims_test2.drop(['ClaimAmount'], axis = 1)

fitted_y = GBMmodelS.predict(claims_train2_X)
pred_y = GBMmodelS.predict(claims_test2_X)

A table for the comparison between predictions both from GLM and for GBM models in the test sets
:

103

claims_test_results = claims_test2[['ClaimAmount']]
claims_test_results['GLM prediction'] = claims_pred
claims_test_results['GBM prediction'] = pred_y
The same table but for fitted values from the test set:
claims_train_results = claims_train2[['ClaimAmount']]
claims_train_results['GLM prediction'] = claims_fitted
claims_train_results['GBM prediction'] = fitted_y

claims_train_results.sum()

Performance results

Dgamma = DevianceG(claims_train_results['ClaimAmount'].values, claims_train_results['GBM predictio
n'].values)
GEgammaGBMtrain = Dgamma / claims_train_results['ClaimAmount'].shape[0]

modeltype.append('Severity')
modeldesc.append('Fine-tunned severity GBM')
GEtype.append('Gamma')
modeltrainGE.append(round(GEgammaGBMtrain, 5))

print('Based on Train data: Deviance is', round(Dgamma,2), 'and Generalization Error is', round(GE
gammaGBMtrain, 5))

Dgamma = DevianceG(claims_test_results['ClaimAmount'].values, claims_test_results['GBM prediction'
].values)
GEgammaGBMtest = Dgamma / claims_test_results['ClaimAmount'].shape[0]

modeltestGE.append(round(GEgammaGBMtest, 5))

print('Based on Test data: Deviance is', round(Dgamma,2), 'and Generalization Error is', round(GEg
ammaGBMtest, 5))

Performance results for alternative model

claims_test3_y = claims_test3['ClaimAmount'].values
claims_test3_X = claims_test3.drop(['ClaimAmount'], axis = 1)

fitted_y = GBMmodelS1.predict(claims_train3_X)
pred_y = GBMmodelS1.predict(claims_test3_X)

Dgamma = DevianceG(claims_train_results['ClaimAmount'].values, fitted_y)
GEgammaGBMtrain = Dgamma / claims_train_results['ClaimAmount'].shape[0]

modeltype.append('Severity')
modeldesc.append('Fine-tunned alt. severity GBM')
GEtype.append('Gamma')
modeltrainGE.append(round(GEgammaGBMtrain, 5))

print('Based on Train data: Deviance is', round(Dgamma,2), 'and Generalization Error is', round(GE
gammaGBMtrain, 5))

Dgamma = DevianceG(claims_test_results['ClaimAmount'].values, pred_y)
GEgammaGBMtest = Dgamma / claims_test_results['ClaimAmount'].shape[0]

modeltestGE.append(round(GEgammaGBMtest, 5))

print('Based on Test data: Deviance is', round(Dgamma,2), 'and Generalization Error is', round(GEg
ammaGBMtest, 5))

Hyper-parameter tunning for GBM severities

The dictionary helps to compile the different values for the hyperparameters that we will be tes
ting
params_dt = {
 'learning_rate': [0.05, 0.02, 0.01],
 'n_estimators': [200, 500, 700],

104

 'max_depth': [1, 2, 3]
}

Now we will define the function that will do the whole process of K-fold cross-validation for a
GBM model with
a different set of hyperparameters, all of it based on our training information
def HyperpTrialGBM(nfolds, X, y, l_rate = 0.01, n_est = 1000, max_d = 5, frac_ft = None):

 seed = 2802
 GBMmodel = lgb.LGBMRegressor(max_depth = max_d, learning_rate = l_rate, n_estimators = n_est,
 objective = 'gamma', random_state = seed,
 feature_fraction = frac_ft, importance_type = "gain")

 kf = KFold(n_splits=nfolds, shuffle=False)
 GEgammaCV = []
 start=datetime.now()

 for train_index, test_index in kf.split(X, y):

 X_train, X_val = X.iloc[train_index], X.iloc[test_index]
 y_train, y_val = y[train_index], y[test_index]

 GBMmodel.fit(X_train, y_train,
 eval_set=[(X_val, y_val)], early_stopping_rounds=20)
 eval_pred = GBMmodel.predict(X_val)
 Dpois = DevianceG(y_val, eval_pred)
 GEgammaCV.append(Dpois / y_val.shape[0])

 GEgammaCVav = mean(GEgammaCV)
 end=datetime.now()
 runtime = end - start

 return GEgammaCVav, runtime

%%capture

Initiate the list for Generalization Error, and then also for run time
GEs = []
runtimes = []
l_rate = []
n_estimators = []
max_d = []

for i in params_dt['learning_rate']:
 for j in params_dt['n_estimators']:
 for l in params_dt['max_depth']:
 GE, time = HyperpTrialGBM(nfolds = 5, X = claims_train2_X, y = claims_train2_y,
 l_rate = i, n_est = j, max_d = l)
 GEs.append(GE)
 runtimes.append(round(time.total_seconds(), 2))
 l_rate.append(i)
 n_estimators.append(j)
 max_d.append(l)

TunningResults = pd.DataFrame({'Learning Rate':l_rate, 'nº Estimators':n_estimators, 'Max. Depth':
max_d,
 'Validation GE':GEs, 'Run Time (secs.)':runtimes})
TunningResults = TunningResults.set_index(['Learning Rate', 'nº Estimators', 'Max. Depth'])
TunningResults.head()

TunningResults['Run Time (secs.)'].sum()

TunningResults.sort_values(by = "Validation GE").head(3)

Optimal = TunningResults['Validation GE'].idxmin(axis = 1)
Worst = TunningResults['Validation GE'].idxmax(axis = 1)

105

print('The best performing GBM model has learning rate', Optimal[0],
 ', nº of trees', Optimal[1], 'and maximum depth', Optimal[2])
print('The worst performing GBM model has learning rate', Worst[0],
 ', nº of trees', Worst[1], 'and maximum depth', Worst[2])

Fine-tunning for Stochastic GBM
%%capture
params_dt = {
 'feature_fraction': [0.3, 0.6, 0.8, 1]
}

GEs = []
runtimes = []

for i in params_dt['feature_fraction']:
 GE, time = HyperpTrialGBM(nfolds = 5, X = claims_train2_X, y = claims_train2_y,
 l_rate = Optimal[0],
 n_est = Optimal[1], max_d = Optimal[2], frac_ft = i)
 GEs.append(GE)
 runtimes.append(round(time.total_seconds(), 2))

for i in range(len(params_dt['feature_fraction'])):
 print("Total run time for optimal GBM with feature_fraction = {} was:".format(params_dt['featu
re_fraction'][i]), runtimes[i], "while eval GE is:", round(GEs[i], 6))
pd.options.display.float_format = '{:,.2f}'.format
sTunningResults = pd.DataFrame({'Feature fraction':params_dt['feature_fraction'],
 'Validation GE':GEs, 'Run Time (secs.)':runtimes})
sTunningResults = sTunningResults.set_index(['Feature fraction'])
sTunningResults['Validation GE'] = sTunningResults['Validation GE'].map('{:,.6f}'.format)

sTunningResults

Partial Dependency Plots
def PDPlot(model, feature, trainset, xlims = None, ylims = None, n_grid = 25):
 pdp_dist = pdp.pdp_isolate(model=model, dataset=trainset
 , model_features=trainset.columns, num_grid_points = n_grid
 , feature=feature)

 fig, axes = pdp.pdp_plot(pdp_dist, feature, center = False, plot_params = params, figsize = (8
, 6))
 axes['pdp_ax'].set_ylim(ylims)
 axes['pdp_ax'].set_xlim(xlims)
 axes['pdp_ax'].set_xlabel("", fontsize=15)
 axes['pdp_ax'].set_title(f'PDP for feature {feature}', fontsize=15)
 axes['pdp_ax'].tick_params(axis='both', labelsize=15)

PDPdriverage = PDPlot(GBMmodelS, 'DriverAge', claims_train2_X, ylims = [1100, 1500])
PDPcarage = PDPlot(GBMmodelS, 'CarAge', claims_train2_X, ylims = [1000, 1500])
PDPdensityS = PDPlot(GBMmodelS, 'DensityS', claims_train2_X, ylims = [1100, 1500])
PDPdensityS = PDPlot(GBMmodelS, 'Frequency', claims_train2_X, ylims = [1100, 1600], xlims = [0, 10
], n_grid = 29)

Loss Costing with GBM models

freqs_test.shape

def PricingGBM(test, weights, freqGBM, sevGBM):

 # The GBMs must make their predictions for both frequencies and severities
 testF = test[freqGBM.feature_name_]
 freq_pred = freqGBM.predict(testF)
 freq_pred = freq_pred * weights

 testS = test[sevGBM.feature_name_]
 sev_pred = sevGBM.predict(testS)

106

 # Once we have the predictions, we can easily compute the pure premium
 pure_premium = freq_pred * sev_pred
 return freq_pred, sev_pred, pure_premium

We aggregate the loss incurred by each policy, so that we can join this information with the fre
qs table
AggregatedLoss = claims1.groupby(level = 0).sum()['ClaimAmount']
We initiate the PremiumAnalysis table, were the summary information will be compiled
PremAnalysisGBM = freqs_test[['ClaimNb', 'Exposure']].copy()
We perform the joint with PremiumAnalysis as the target
PremAnalysisGBM = pd.merge(PremAnalysisGBM, AggregatedLoss, how = 'left', left_index = True, right
_index = True)
PremAnalysisGBM.fillna(0, inplace = True)
PremAnalysisGBM = PremAnalysisGBM.rename(columns = {'ClaimAmount':'Aggregated Loss'})
PremAnalysisGBM['Pred. Frequency'], PremAnalysisGBM['Pred. Severity'], PremAnalysisGBM['Pure Premi
um'] = PricingGBM(freqs_test,

weights = freqs_test2_w,

freqGBM = GBMmodel0,

sevGBM = GBMmodelS1)

PremAnalysisGBM['Anual Pure Prem.'] = PremAnalysisGBM['Pure Premium'] / PremAnalysisGBM['Exposure'
]
PremAnalysisGBM.describe()

PremAnalysisGBM.iloc[15:23]

seed = 2303
PremAnalysisGBM.iloc[[seed]][['Pred. Frequency', 'Pred. Severity', 'Pure Premium', 'Anual Pure Pre
m.']]

Final comparative Analysis between GLMs and GBM models

Predictive Performance
pd.options.display.float_format = '{:,.6f}'.format
PerformanceTable = pd.DataFrame({'Model Type': modeltype, 'Model Desc.': modeldesc,
 'GE Type': GEtype, 'Model Train GE': modeltrainGE, 'Model test GE
': modeltestGE})
PerformanceTable = PerformanceTable.set_index(['Model Type', 'Model Desc.'])
PerformanceTable.sort_index(level = 0)

Premium Analysis
pd.options.display.float_format = '{:,.2f}'.format
CompStatistics = pd.DataFrame({'GLM':PremAnalysisGLM.sum().values, 'GBM':PremAnalysisGBM.sum().val
ues},
 index = PremAnalysisGLM.sum().index)

LossRatio = CompStatistics.loc[['Pure Premium']].values / CompStatistics.loc[['Aggregated Loss']]
LossRatio = LossRatio.rename(index = {'Aggregated Loss':'Loss Ratio'})
CompStatistics = CompStatistics.drop('Pred. Severity')
CompStatistics.loc['ClaimNb'] = CompStatistics.loc['ClaimNb'].map('{:,.0f}'.format)
CompStatistics.loc['Aggregated Loss'] = CompStatistics.loc['Aggregated Loss'].map('{:,.2f} €'.form
at)
CompStatistics.loc['Pure Premium'] = CompStatistics.loc['Pure Premium'].map('{:,.2f} €'.format)
CompStatistics.loc['Anual Pure Prem.'] = CompStatistics.loc['Anual Pure Prem.'].map('{:,.2f} €'.fo
rmat)

CompStatistics = CompStatistics.append(LossRatio)
CompStatistics.loc['Loss Ratio'] = CompStatistics.loc['Loss Ratio'].map('{:,.2%}'.format)
CompStatistics

Comparative Premium Tables

107

ComparativePrem = PremAnalysisGLM[['ClaimNb', 'Exposure', 'Aggregated Loss', 'Pure Premium']]
ComparativePrem = ComparativePrem.rename(columns = {'Pure Premium':'GLM Premium'})
ComparativePrem['GBM Premium'] = PremAnalysisGBM['Pure Premium']
ComparativePrem[15:23]
pd.options.display.float_format = '{:,.2f}'.format
ComparativePrem.describe()[['Aggregated Loss', 'GLM Premium', 'GBM Premium']]
train_fr = freqs_train['ClaimNb'].sum()/freqs_train['Exposure'].sum()
print('The empirical frequency on train set was {}'.format(round(train_fr, 6)))
test_fr = freqs_test['ClaimNb'].sum()/freqs_test['Exposure'].sum()
print('The empirical frequency on test set was {}'.format(round(test_fr, 6)))
print('The difference amounts to a {:,.3%}'.format(round(test_fr/train_fr-1, 6)))
train_cl = claims_train['ClaimAmount'].mean()
test_cl = claims_test['ClaimAmount'].mean()
print('The average severity on train set was {:,.2f}€'.format(round(train_cl, 6)))
print('The average severity on test set was {:,.2f}€'.format(round(test_cl, 6)))
print('The difference amounts to a {:,.3%}'.format(round(test_cl/train_cl-1, 6)))

Quantile analysis

import statsmodels.api as sm
import pylab as py

quants = np.array(range(1,100,1))/100

GLMquants = [np.quantile(PremAnalysisGLM['Anual Pure Prem.'], i) for i in quants]
GBMquants = [np.quantile(PremAnalysisGBM['Anual Pure Prem.'], i) for i in quants]

QQplot

higher = [1 if gbm > glm else 0 for glm, gbm in zip(GLMquants, GBMquants)]

from matplotlib.pyplot import figure
from matplotlib.colors import ListedColormap

colormap = ListedColormap(['royalblue', 'darkorange'])
classes = ['GLM is higher', 'GBM is higher']

fig, ax = plt.subplots(figsize=(7, 7), dpi=100)
scat = ax.scatter(x = GBMquants, y = GLMquants, s = 20, c = higher, cmap = colormap, marker = "+")
ax.yaxis.set_major_formatter('{x:1.0f}€')
ax.xaxis.set_major_formatter('{x:1.0f}€')
ax.grid(True)
ax.set_xlim([30, 220])
ax.set_ylim([30, 220])
ax.plot([0,220], [0, 220], '--', lw=1, color = 'm')
ax.set_xlabel("GBM pure premium quantiles", fontsize=12)
ax.set_ylabel("GLM pure premium quantiles", fontsize=12)
ax.annotate('Break percentile is {}%'.format(len(GLMquants)-sum(higher)), xy=(100, 100), xytext=(1
27, 77),
 arrowprops=dict(facecolor='forestgreen', shrink=0.05))
ax.legend(handles=scat.legend_elements()[0], labels=classes)

GBMquants[len(GLMquants)-sum(higher)]

Premium scatter plot

premiums = ComparativePrem.sample(2000)

upperlim = 300
fig, ax = plt.subplots(figsize=(5, 5), dpi=100)
ax.scatter(x = premiums['GBM Premium'], y = premiums['GLM Premium'], alpha=0.3, s = 15, marker = "
+")
ax.yaxis.set_major_formatter('{x:1.0f}€')
ax.xaxis.set_major_formatter('{x:1.0f}€')
ax.grid(True)
ax.set_xlim([0, upperlim])
ax.set_ylim([0, upperlim])
ax.plot([0,upperlim], [0, upperlim], '--', lw=1, color = 'm')

108

ax.set_xlabel("GBM pure premium", fontsize=12)
ax.set_ylabel("GLM pure premium", fontsize=12)

upperlim = 300
fig, ax = plt.subplots(figsize=(7, 7), dpi=100)
ax.scatter(x = premiums['GBM Premium']/premiums['Exposure'], y = premiums['GLM Premium']/premiums[
'Exposure'], alpha=0.3, s = 15, marker = "+")
ax.yaxis.set_major_formatter('{x:1.0f}€')
ax.xaxis.set_major_formatter('{x:1.0f}€')
ax.grid(True)
ax.set_xlim([0, upperlim])
ax.set_ylim([0, upperlim])
ax.plot([0,upperlim], [0, upperlim], '--', lw=1, color = 'm')
ax.set_xlabel("GBM anualized pure premium", fontsize=10)
ax.set_ylabel("GLM anualized pure premium", fontsize=10)

109

D. Visualizations through ggplot2 in R

Some of the initial EDA plots and figures from Chapter 3 where made through ggplot2 in an R

environment, given that the original data set used in court case study comes from the R package

CASdatasets.

French Motor Third-Party Liability datasets

library(xts)
library(sp)
library(zoo)
library(knitr)
library(ggplot2)
library(dplyr)

library(CASdatasets)

Importing the data

data(freMTPLfreq)
data(freMTPLsev)
data(freMTPL2freq)
data(freMTPL2sev)

EDA for CAS dataset

freMTPLfreq

ClaimsNb <- freMTPLfreq$ClaimNb
freMTPLfreq$ClaimNb <- array(freMTPLfreq$ClaimNb)
levels(freMTPLfreq[["Brand"]]) <- c("Fiat", "J-{N}/K", "MChB", "OGmF", "other", "RNC", "VASkSe")
levels(freMTPLfreq$Region) <- c("Aq", "BN", "Br", "Ce", "HN", "IdF", "L", "NPdC", "PdlL", "PC")
str(freMTPLfreq)

library(ggpubr)
library(gridExtra)

str(freMTPLsev)

library(tidyverse)
path = "C:\\Users\\usuario\\Desktop\\Uni\\Máster 2º Año\\Cuarto Cuatrimestre\\TFM"

write.csv(freMTPLfreq, file = str_c(path, "\\", "freMTPLfreq.csv"), row.names = FALSE)
write.csv(freMTPLsev, file = str_c(path, "\\", "freMTPLsev.csv"), row.names = FALSE)

Variables exploration

ggplot(freMTPL2freq) +
 geom_density(aes(x = Density), fill = "goldenrod1", colour = "goldenrod3") +
 labs(title = "Histogram of Density Distribution", x = "Density", y = "Count")

 exposure <- ggplot(freMTPL2freq) +
 geom_density(aes(x = Exposure), fill = "goldenrod1", colour = "goldenrod3") +
 theme(axis.text = element_text(size = 7)) +
 xlim(0, 1.1)

table(freMTPLfreq$ClaimNb)
lin <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = ClaimNb), fill = "goldenrod1", colour = "goldenrod3") +
 scale_y_continuous(labels = scales::comma) +
 labs(title = "nº Claims Distribution on linear scale", x = "Exposure", y = "nº Policies") +
 theme(plot.title = element_text(size = 11, face = "bold"))

log <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = ClaimNb), fill = "goldenrod1", colour = "goldenrod3") +

110

 scale_y_log10(labels = scales::comma, n.breaks = 5) +
 labs(title = "nº Claims Distribution on log scale", x = "Exposure", y = "nº Policies") +
 theme(plot.title = element_text(size = 11, face = "bold"))

grid.arrange(lin, log, nrow = 1)

Power <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = Power, fill = Power)) +
 theme(axis.text = element_text(size = 7)) +
 theme(legend.position = "none")
CarAge <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = CarAge), fill = "aquamarine2", colour = "aquamarine3") +
 theme(axis.text = element_text(size = 7)) +
 xlim(0, 50)
DriverAge <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = DriverAge),fill = "lightsalmon1", colour = "lightsalmon2") +
 theme(axis.text = element_text(size = 7))
Brand <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = Brand, fill = Brand)) +
 theme(legend.position = "none") +
 theme(axis.text = element_text(size = 7))
Gas <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = Gas, fill = Gas)) +
 theme(legend.position = "none") +
 theme(axis.text = element_text(size = 7))
Region <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = Region, fill = Region)) +
 theme(legend.position = "none") +
 theme(axis.text = element_text(size = 7))
Density <- ggplot(freMTPLfreq) +
 geom_density(aes(x = Density), fill = "magenta1", colour = "magenta3") +
 labs(x = "Population Density", y = "density") +
 theme(axis.text = element_text(size = 7))
grid.arrange(Power, CarAge, DriverAge, Brand, Gas, Region, exposure, Density, nrow = 4)

outl <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = CarAge), fill = "aquamarine2", colour = "aquamarine3") +
 # labs(title = "CarAge outliers distribution") +
 theme(axis.text = element_text(size = 7), plot.title = element_text(size = 11, face = "bold"))
+
 xlim(40, 101)
outl2 <- ggplot(freMTPLfreq) +
 geom_bar(aes(x = DriverAge), fill = "lightsalmon1", colour = "lightsalmon2") +
 theme(axis.text = element_text(size = 7), plot.title = element_text(size = 11, face = "bold"))
+
 xlim(90, 101)
grid.arrange(outl, outl2, nrow = 1)

amounts <- ggplot(freMTPLsev) +
 geom_density(aes(x = ClaimAmount), fill = "goldenrod1", colour = "goldenrod3") +
 theme(axis.text = element_text(size = 10)) +

 xlim(0, 4000) +
 ylim(0, 0.003) +
 labs(x = "Claim Amount (euros)", y = "density")

quant <- c(seq(0.8, 1, 0.02), 0.99)
results <- qgamma(quant, shape = 0.010221898037467, scale = 208376.1736022709)

analysis <- cbind(quant, results)

