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Abstract

Current decision‐making models assume that an in-

dividual's attitude towards risk is unique. Hence, a

decision maker's processing of probabilities and the

resulting degree of probability weighting should not

vary within the domain of risk. This paper provides

evidence that challenges this assumption. We conduct

two experiments involving different gambles, that is,

risky games where objective probabilities are known,

no further information‐based advantages exist, and

outcomes are independent of knowledge. Even though

all probabilities are explicitly provided, we find that

individuals exhibit more pronounced inverse‐S‐shaped
probability weighting if they perceive their level of

expertise regarding a gamble to be lower. This result

suggests that individuals are subject to ignorance illu-

sion in decisions under risk, constituting expertise‐
dependent risk attitudes. We document that ignorance

illusion stems from the wrongly assigned importance of

perceived expertise in the decision‐making process and

that it occurs in both the gain and the loss domain.
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1 | INTRODUCTION

It is widely accepted that individuals do not process probabilities as normatively prescribed by
Subjective Expected Utility Theory (Savage, 1954). Instead, probabilities are transformed nonlinearly,
that is, people tend to overweight low (tail) probabilities and underweight high probabilities
(e.g., Kahneman & Tversky, 1979; Quiggin, 1982; Tversky & Kahneman, 1992). This behavior results
in an inverse‐S‐shaped probability weighting function. Even though current decision‐making models
do account for nonlinear probability distortions, they typically assume that risky events, that is,
events where objective probabilities are known to the decision maker, constitute a unique source of
uncertainty1 (Abdellaoui et al., 2011; Chew & Sagi, 2008; Ergin & Gul, 2009; Nau, 2006). These
models therefore claim that an individual's risk attitude and hence probability weighting function
does not vary across decisions within the domain of risk.

Recent experimental evidence, however, suggests that the perception of one's own expertise
crucially alters economic behavior in decisions under risk. Individuals with higher perceived
expertise are more willing to pursue risky investments (Hadar et al., 2013), hold larger fractions
of risky assets in their portfolios (Frijns et al., 2008), and prefer securities they feel more
knowledgeable about (Ackert et al., 2005; Fellner et al., 2004). These findings are remarkable
given that the amount of actual information concerning the underlying choices was held
constant across levels of perceived expertise. The fact that previous studies have shown that an
individual's value function is stable across sources of uncertainty (Abdellaoui et al., 2016;
Armantier & Treich, 2016) points to the importance of the probability weighting function for
explaining expertise‐dependent variation in risk attitudes.

Allowing for probability weighting is also important to better understand risk attitudes and
risky choices in the insurance domain (Hansen et al., 2013; Kairies‐Schwarz et al., 2017). When
individuals judge the attractiveness of insurance, processing (loss) probabilities is central to the
decision‐making process. More pronounced inverse‐S‐shaped probability weighting increases,
ceteris paribus, the willingness to pay for insurance because low probability outcomes with large
positive claims are overweighted while high probability, no‐claim outcomes are underweighted
(Hansen et al., 2013; Harrison & Ng, 2016; Schmidt, 2016; Werner, 2016). According to the
models cited above, insurance demand should not vary across different insurance contexts if the
respective adverse events occur with the same probability (and magnitude). The documented
framing effects on the willingness to pay for insurance (Jaspersen, 2016; Johnson et al., 1993)
refute this prediction and suggest that individual perceptions shape risk attitudes in insurance
decisions.

1
Throughout this paper, the term uncertainty captures both risk (known outcome probabilities) and ambiguity (unknown outcome probabilities).
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In this paper, we test whether perceived expertise regarding a decision under risk affects an
individual's probability weighting function. In the domain of risk, actual knowledge differences
regarding outcome probabilities cannot exist by definition. However, the decision maker might
irrationally feel less knowledgeable about one of the risky events, despite having identical
information regarding the relevant statistical properties for all of them. Thus, we refer to a
decision maker who displays different attitudes towards risk due to variation in perceived
expertise as being subject to ignorance illusion.

Indirect evidence for the impact of perceived expertise on risk attitudes is provided by
Armantier and Treich (2016). They find that individuals have different attitudes towards risk
depending on the complexity of the underlying event. In their experiment, however, subjects
were not explicitly provided with objective probabilities, but had to calculate them on their
own, leaving room for calculation errors or even ambiguity aversion to explain their findings.
To eliminate these identification problems, we create an experimental design where subjects
have complete information about the objective probabilities involved. Also, instead of focusing
on complexity, we directly explore the impact of perceived expertise on probability weighting.

To examine how perceived expertise affects an individual's processing of probabilities in
decisions under risk, we first conduct an experiment using three different gambles: a ticket‐
based lottery, roulette, and craps. These gambles strongly differ in their popularity among the
general public but share the characteristic of being purely random prospects. Thus, skill,
experience, or knowledge about the gamble (beyond objective probabilities) have no impact on
the expected outcome. Thereby, we can induce variation in participants' perceived expertise
regarding the respective gamble, enabling us to explore its impact on probability weighting,
both between and within subjects.

Our results indicate that lower perceived expertise about a gamble leads to more pro-
nounced inverse‐S‐shaped probability weighting even though all objective probabilities are
provided. Hence, we observe ignorance illusion, that is, an individual's attitude toward risk
depends on the level of perceived expertise. The degree of probability weighting therefore varies
within the domain of risk, challenging the assumption of risk constituting a unique source of
uncertainty.

We identify an individual's self‐perception of expertise as the main driver of our results.
Differences in probability weighting are most pronounced when employing a measure of ex-
pertise that is purely based on an individual's self‐assessment while using more indirect
measures of perceived expertise yields smaller effects. Moreover, even when individuals ob-
jectively lack gamble‐specific knowledge (beyond the provided probabilities) but perceive
themselves as experts, they engage less in inverse‐S‐shaped probability weighting than parti-
cipants who are objectively well informed but perceive themselves as laymen. Hence, the
observed differences in probability weighting cannot be the result of better actual (though
irrelevant) knowledge regarding a gamble. Furthermore, we document that perceived expertise
mitigates inverse‐S‐shaped probability weighting beyond an individual's experience regarding a
risky choice.2

Given the identified importance of a subject's self‐perception, we conduct a second ex-
periment to explore whether informing subjects about the irrelevance of perceived expertise in
the decision‐making process alters the degree of probability weighting, that is, the presence of
ignorance illusion. Our results suggest that this is the case. While participants in the control

2
List (2003, 2004) provides evidence that more experienced individuals are more likely to behave in accordance with neoclassical predictions in decisions

under risk.
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groups exhibit ignorance illusion to a similar degree as in the first experiment, we do not find
any differences in probability weighting between experts and laymen when subjects are made
aware of the fact that perceived expertise should not affect decisions under risk. Our second
experiment furthermore provides evidence that ignorance illusion prevails in both the gain and
loss domain and that our findings are robust to the employed estimation approach for eliciting
a subject's value function parameter.

The main contributions of this paper are threefold. First, we provide experimental evidence
that individuals are subject to ignorance illusion in decisions under risk. We find more pro-
nounced inverse‐S‐shaped probability weighting for lower levels of perceived expertise which
implies that risk does not constitute a unique source of uncertainty. Second, we show that the
phenomenon of ignorance illusion is driven by an individual's self‐perception of expertise,
which can, but does not have to align with the actual knowledge level regarding the risky event.
Third, we document that ignorance illusion stems from the fact that decision makers are
unaware of the irrelevance of perceived expertise in decisions under risk. Our results suggest
that perceived expertise can serve as counter‐bias mechanism to achieve more linear prob-
ability processing among decision makers and thereby affect investment and insurance
behavior.

This paper proceeds as follows: Section 2 outlines related literature. Section 3 presents our
first, and Section 4 our second experiment. Section 5 concludes.

2 | RELATED LITERATURE

Current decision‐making models assume that the weighting function applied to objective
probabilities underlying monetary outcomes of risky prospects is invariant (Abdellaoui et al.,
2011; Chew & Sagi, 2008; Ergin & Gul, 2009; Nau, 2006).3 Recent empirical evidence raises
doubts about the validity of this assumption, pointing to an important role of perceived ex-
pertise in decisions under risk.4

Since value functions have been found to be stable across sources of uncertainty (Abdellaoui
et al., 2016; Armantier & Treich, 2016), observing expertise‐related variation in risk attitudes
hints at a potential impact of perceived expertise on the degree of probability weighting. In an
fMRI study based on a sample of 16 subjects, Chew et al. (2008) document that individuals
favor more familiar over less familiar stocks when confronted with “almost‐objective” 50/50
prospects. However, given that distortions of probabilities around 50% have been shown to be
rather small (Abdellaoui et al., 2011), it is unclear whether their results are due to differences in
probability weighting or subjective misperceptions of the involved, though not explicitly pro-
vided probabilities. Hadar et al. (2013) provide experimental evidence that risk‐taking behavior
is affected by an individual's level of subjective knowledge. They show that higher levels of
subjective knowledge increase the attractiveness of risky investments and the willingness to
invest in them. Similarly, Frijns et al. (2008) find that the share of risky assets in an investor's

3
The invariance assumption concerns the processing of objective probabilities within subjects. Heterogeneity in probability weighting between subjects (e.g.,

Bruhin et al., 2010; Choi et al., 2021; Fehr‐Duda et al., 2006; Millroth & Juslin, 2015; Traczyk & Fulawka, 2016) can be accommodated by the aforementioned

decision‐making models.
4
As this study focuses on risky prospects involving standardized monetary outcomes for which probability‐outcome independence can be expected to hold

(Rottenstreich & Hsee, 2001), we do not discuss empirical evidence concerning affect‐rich decision situations and the related effect of emotions on probability

weighting (e.g., Kusev et al., 2009; Mukherjee, 2011; Petrova et al., 2019; Rottenstreich & Hsee, 2001; Suter et al., 2016).
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portfolio increases in self‐assessed financial expertise. Bruhin et al. (2018) show that a subject's
belief about relative skill drives differences in behavior in skill and luck gambles.

The behavior toward compound lotteries provides further evidence for a potential link
between perceived expertise and risk attitudes. Compound objective lotteries are typically
valued less than simple lotteries with the same reduced probability (Abdellaoui et al., 2015;
Budescu & Fischer, 2001; Dillenberger, 2010). Complexity is discussed as one of the main
reasons for compound lottery aversion. If one assumes that a decision maker's perceived ex-
pertise decreases in event complexity, this could explain the difference in risk attitude between
simple and compound risks. Armantier and Treich (2016) explore how the complexity of
random events affects probability weighting functions and hence provide an indirect test on the
impact of perceived expertise on probability weighting. They find that subjects engage less
strongly in probability weighting for simple compared with complex events. However, their
results suffer from two potential confounders stemming from the fact that subjects had to
calculate the objective probabilities on their own.

As discussed by Armantier and Treich (2016) themselves, it is unclear whether subjects
constructed the correct objective probabilities. If the difficulty associated with the complex
events prevented subjects from forming correct probabilities, inferences regarding the esti-
mated probability weighting function are disturbed. Even worse, subjects might not have been
able to construct some or even any of the objective probabilities underlying the complex events.
In that case, the complex event would no longer resemble a source of risk but instead a source
of (partial) ambiguity. It might thus not be surprising that Armantier and Treich (2016) find
similar source functions for complex risky and ambiguous prospects.

To overcome these problems and to examine the impact of perceived expertise on the degree
of probability weighting in decisions under risk directly, we follow a different approach that is
outlined in the next section.

3 | EXPERIMENT I

3.1 | Methodology

3.1.1 | Experimental design

To test whether perceived expertise has an impact on probability weighting, we conducted an
experiment with 297 students at a German university. 41% of our participants are female, 30%
are graduate students, and the average age is 23 years. The computer‐based experiment was run
in 15 sessions with 15–20 subjects each. Completion time was about 1 h, and subjects' choices
were incentivized. In addition to receiving a fixed payment of 5 €, subjects were told upfront
that one of their decisions made throughout the experiment would be randomly selected and
played out for real money. Experimental currency units (ECU) were transformed into € using a
10:1 conversion rate. On average, subjects were paid 11.82 €.

The main challenge in our experimental design is to vary subjects' perceived expertise while
providing them with objective probabilities. To achieve this, we transfer the idea of perceived
competence in the ambiguity literature (Tversky & Fox, 1995) to a pure risk setting and utilize
three different gambles as random devices, namely, (1) a ticket‐based lottery, (2) roulette, and
(3) craps. We chose these gambles for two reasons. First, their popularity strongly varies in
Germany. Ticket‐based lotteries are typically well‐known and oftentimes already played
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in childhood. Roulette is one of the most popular casino games, while craps, also offered in
casinos, is hardly known and rarely played. Second, all of these gambles can be classified as
purely random, that is, an individual cannot influence the probability of winning in a specific
game situation, even if she knows the gamble well. Therefore, we expect that our choice of
gambles induces variation in subjects' perceived expertise, enabling us to explore differences in
probability weighting across perceived experts and laymen, both between and within subjects.

For each gamble, subjects had to first fill out a questionnaire, consisting of questions
regarding their perceived expertise as well as four knowledge questions about the gamble and
their confidence in the provided answers. To ensure that subjects fully understood the sub-
sequent decision situations involving gamble‐specific information, the questionnaire was fol-
lowed by a short introduction of the gamble. This included explanations of its general rules and
clarifications of important terms. The subjects then had to indicate certainty equivalents for
binary prospects for each gamble, in which they could either win 100 ECU with seven different
probabilities P {1%, 5%, 10%, 40%, 90%, 95%, 99%}∈ or receive 0 ECU otherwise. We chose the
lower and higher three probabilities since probability weighting is found to be most pro-
nounced for probabilities close to 0 and 1 (see, e.g., Tversky & Kahneman, 1992). We also
included the medium probability of 40% to observe weighting patterns around the expected
inflection point, which is commonly found to be close to P = 40%.5 The order in which the three
different gambles were presented to subjects and the order of probabilities to win the binary
prospects within a gamble were randomized.

Probabilities were first described in terms of specific game situations of the respective
gamble and then stated explicitly.6 Descriptions of the specific game situations across gambles
are presented in Table 1.

The game situations were chosen because they approximate the stated objective probabilities
well while being concise and easy to understand.7 The latter criterion is vital to our experiment,
given the numerous choices subjects had to make. The detailed experimental instructions and
questionnaires are provided in Supporting Information Appendix B (translated from German).

Similar to Kilka and Weber (2001), certainty equivalents are elicited using a choice list
format, that is, subjects indicate their choice between accepting the presented risky prospect or
a given sure payment of X ECU. To reduce the number of choices subjects had to make in the
experiment and therefore increase the attention paid to each decision, we adapted the range of
X based on the probability of winning the prospect. For P {1%, 5%, 10%}∈ , X ranged from 1 to
40. For P {90%, 95%, 99%}∈ , X ranged from 99 to 40. For P = 40%, X covered the whole range
from 1 to 99. Within these ranges, X was varied in steps of 5 ECU in general and 4 ECU from 1
to 5 and from 99 to 95. In addition to indicating their choices for these specific offers, subjects
had to state their exact certainty equivalent for a prospect, that is, the amount they would
demand as a certain payment to refrain from accepting the risky prospect.

5
Our overview of studies on probability weighting in Supporting Information Appendix A shows that probability overweighting usually turns into under-

weighting around the probability of P = 40%.
6
To explore the effect of wording on probability weighting we presented probabilities in two ways. Half of the participants received objective probabilities as a

percentage value (e.g., “winning this lottery occurs in P% of the cases”). For the other half, objective probabilities were stated as successes out of a hundred

games (e.g., “winning this lottery occurs in P out of 100 cases”). As we do not find significant differences between both groups, we do not further distinguish

between them in our analyses.
7
To ensure that our results are not affected by potential approximation‐related differences in probability weighting, we conduct two robustness tests. First, to

account for the possibility that the pattern of gamble‐specific deviations might affect the degree of probability weighting, we rerun our main regressions (cf.

Section 3.2.2) while also including gamble fixed effects. This alternative specification leaves our results qualitatively unchanged. Second, we utilize different

game situations in our second experiment for which implied and stated probabilities are equal up to the fourth decimal place. Our main findings are robust to

this alteration.
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The final part of the experiment consisted of an additional questionnaire regarding a subject's
cognitive abilities, overconfidence, and personal information. Following Blavatskyy (2009), the
overconfidence task was incentivized, offering subjects the chance to win another 20 ECU.

3.1.2 | Data and variables

Overall, we obtain data on participants' certainty equivalents for seven different prospects for
each of the three gambles, which enables us to estimate one probability weighting parameter
for each subject and gamble (subject‐gamble observation). Moreover, we elicit information on
subjects' subjective and objective knowledge as well as their self‐assigned expertise with respect
to these gambles. To be included in our final sample, all of a subject's choices within a gamble
have to fulfill two criteria. First, subjects do not switch back and forth between choosing the
risky prospect and receiving the sure payment X , that is, when X increases for a given P,
subjects who prefer the amount X1 over choosing the prospect also prefer the amount X2 over

TABLE 1 Complementary descriptions of specific game situations to illustrate objective probabilities across
gambles

P Ticket‐based lottery Roulette Craps

1% Drawing a winning ticket
out of a pot with
1 winning ticket and
99 blanks

Win in three rounds of roulette, each
time betting on two different
Carrés (four adjacent numbers)

Win a round of craps after
exactly 4 throws of the dice
and throw an 8 in your first
throw

5% Drawing a winning ticket
out of a pot with
5 winning ticket and
95 blanks

Win in one round of roulette, betting
on a Split (two adjacent numbers)

Win a round of craps with your
first throw by throwing
an 11

10% Drawing a winning ticket
out of a pot with
10 winning ticket and
90 blanks

Win at least once in four rounds of
roulette, each time betting on one
number

Throw a 5 or a 6 in your first
throw and throw a winning
number afterwards

40% Drawing a winning ticket
out of a pot with
40 winning ticket and
60 blanks

Win at least once in one of six rounds
of roulette, each time betting on a
Transversale Plein (three adjacent
numbers)

Win the round of craps if the
first throw is a 5

90% Drawing a winning ticket
out of a pot with
90 winning ticket and
10 blanks

Win at least once in one of six rounds
of roulette, each time betting on
one of the Dozens (12 adjacent
numbers)

Win more than 2 times in
10 rounds of craps

95% Drawing a winning ticket
out of a pot with
95 winning ticket and
5 blanks

Win at least once in one of eight
rounds of roulette, each time
betting on one of the Dozens
(12 adjacent numbers)

Win at most 7 times in
10 rounds of craps

99% Drawing a winning ticket
out of a pot with
99 winning ticket and
1 blank

Win at least once in one of seven
rounds of roulette, each time
betting on one color, red or black

Win at least once in 7 rounds of
craps
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choosing the prospect for all X X>2 1. Second, the stated certainty equivalent must lie between
the sure payment Xlast that was offered when subjects preferred the risky prospect for the last
time and the sure payment Xfirst that made them prefer the sure payment for the first time
(certainty equivalent X X[ , ]last first∈ ). Applying these criteria yields our final sample of 4529
certainty equivalents provided by 274 subjects, yielding 647 subject‐gamble observations.

We construct three different measures to quantify the level of subjects' perceived expertise
regarding the gambles.

Self‐assigned expertise
We measure self‐assigned expertise as a subject's answer to the question whether she considers
herself to be an expert in the respective gamble (rated on a 7‐point Likert scale, where a higher
value indicates a higher self‐assigned expertise). This measure most directly captures a subject's
own opinion about her level of expertise. For our pooled analyses, we classify subjects as self‐
assigned experts in a gamble if they rated their expertise as four or higher and as self‐assigned
laymen otherwise.

Subjective expertise
This measure intends to elicit subjects' levels of expertise in a more indirect manner while still
relying on subjective assessments. It is based on four different questionnaire items: Whether
subjects know the gamble at all (yes/no), how often they played it before, if they are well aware
of the rules, and if they have an idea of the winning probabilities in different game situations.
The latter two items are rated on a 7‐point Likert scale, where a higher value indicates a higher
self‐assessment. Utilizing polychoric correlations to recognize the ordinal and binary nature of
our variables, we perform an explorative factor analysis to condense the information of our
variables and form one single factor, representing our measure of subjective expertise. The
obtained factor has an eigenvalue larger than 1 and all factor loadings are well above the usual
threshold of 0.4 (>0.93). To form groups for our pooled analyses, we classify subjects as sub-
jective experts in a gamble if they belong to the top quintile in terms of subjective expertise and
as subjective laymen if they belong to the bottom quintile.8 All other subjects form the residual
category.

Objective expertise
Our third measure is solely based on objectively verifiable information. It enables us to dis-
tinguish between actual expertise regarding a gamble and the perception thereof. For every
gamble, subjects were confronted with four statements concerning its rules or general setup
and had to indicate whether the respective statement if true or false. Objective expertise is
measured as the number of correct answers at the subject‐gamble level and hence ranges from
0–4. For our pooled analysis, we classify subjects as objective experts with at least three correct
answers because such individuals have answered more questions correctly than would be
expected from random guessing. Consequently, subjects with 1 or 0 correct answers are clas-
sified as objective laymen. All other subjects form the residual category.

Table 2 provides summary statistics for the three expertise measures as well as their pair-
wise correlation coefficients. While self‐assigned expertise measures perceived expertise in the
most direct manner, incorporating inferred subjective or even objective expertise assessments

8
In an unreported robustness test, we classify subjects as subjective experts (laymen) in a gamble if they belong to the top (bottom) 10% [30%] in terms of

subjective expertise. The obtained results are qualitatively unchanged.
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dilutes the impact of perception. In line with this argument, differences in experts' and lay-
men's answers to the question whether they consider themselves to be experts in the respective
gamble decrease as we measure perceived expertise more indirectly. While experts rate
themselves significantly higher (p < 0.01) than laymen regardless of the applied measure, the
difference is higher for self‐assigned expertise (Δ3.15) compared with subjective (Δ2.48) and
objective (Δ0.33) expertise. Differences‐in‐differences are statistically significant (p < 0.01).
These results are in line with the observed decrease in correlation with the self‐assigned
expertise measure when moving from the subjective (ρ = 0.793) to the objective (ρ = 0.155)
measure. We hypothesize that perceived expertise mitigates the degree of probability weighting
and that the mitigating effect is strongest for the most direct, self‐assigned measure of perceived
expertise, followed by the subjective and then the objective measure.

Because our three measures rely on considerably different mechanisms to assess expertise,
the respective number of subject‐gamble observations classified as experts and laymen varies.
The sample of self‐assigned experts and laymen is the largest, with all 647 observations as-
signed to one of the two groups (12% self‐assigned experts; 88% self‐assigned laymen). The sum
of expert and laymen observations based on the subjective expertise measure amounts to 363
(37% subjective experts; 63% subjective laymen). The objective expertise classification captures
484 observations (79% objective experts; 21% objective laymen).

3.1.3 | Estimation of probability weighting functions

To estimate probability weighting functions, we first need to transform the stated certainty
equivalents into a subject's utility and then derive the corresponding decision weights as follows:

v CE v w( ) = (100) (P).P ⋅ (1)

Equation (1) states that a subject's utility from its stated certainty equivalent for a given
probability P equals the value of winning the prospect, in which case the subject wins 100 ECU,
multiplied by the decision weight the subject assigns to winning the prospect.

We use the commonly employed power value function of the form v x x( ) = α (e.g., Balcombe &
Fraser, 2015; Kilka & Weber, 2001; Tversky & Kahneman, 1992) to determine the utility of
outcomes. Since we did not vary payoffs and probabilities independently in Experiment I, a joint
identification of the value function parameter α and the degree of probability weighting is not
feasible. We therefore follow the literature and assume in the subsequent analyses that utility is

TABLE 2 Summary statistics and correlation coefficients for measures of expertise

A. Summary statistics B. Correlation coefficients

Mean
Standard
deviation Minimum Maximum

Self‐assigned
expertise

Subjective
expertise

Objective
expertise

Self‐assigned expertise 1.790 1.226 1.000 7.000 1.000

Subjective expertise 0.000 0.906 −0.989 2.607 0.793 1.000

Objective expertise 2.728 1.107 0.000 4.000 0.155 0.253 1.000

Note: Summary statistics for all three measures of expertise (self‐assigned, subjective, or objective) as well as their pairwise
correlation coefficients are reported.
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linear (α = 1; e.g., Enke & Graeber, 2021; Kilka & Weber, 2001).9,10 Equation (1) is then trans-
formed into w (P) =

CE

100
P and yields seven decision weights per subject and gamble.

To estimate the probability weighting function, different functional specifications have been
proposed. We follow, for example, Tanaka et al. (2010) and Aydogan et al. (2016) and utilize the
Prelec (1998) one‐parameter weighting function w e(P) = −(−ln(P))γ, where γ > 0 determines the
curvature and γ0 < < 1 results in the typical inverse S‐shape of this function. As Stott (2006)
points out, more complicated weighting functions are not superior to simpler forms, especially
when paired with a power value function as done in this study. Moreover, the chosen speci-
fication with its fixed inflection point at eP= 1∕ (≈0.37) matches the probability weighting
pattern observed in previous studies (cf. Supporting Information Appendix A).

The weighting function parameter is then estimated individually for each participant and
each gamble using nonlinear regressions. Estimated parameters are winsorized at the 1st and
99th percentiles. For γ = 1, the weighting function reduces to the identity w (P) = P , capturing
the case of rational probability processing (no probability weighting). A smaller value for
γ indicates more pronounced inverse‐S‐shaped probability weighting.

To ensure that our results do not depend on the chosen functional form of the probability
weighting function, we conduct two robustness tests. First, we repeat our main analyses fol-
lowing the nonparametric approach proposed by Dimmock et al. (2020) (cf. Supporting In-
formation Appendix C). Second, as Balcombe and Fraser (2015) provide evidence in favor of
using the Prelec (1998) two‐parameter weighting function, we also rerun our main analyses
using this alternative specification (cf. Supporting Information Appendix D). Both robustness
tests leave our findings qualitatively unchanged.

3.2 | Results

3.2.1 | Differences in certainty equivalents

Table 3 presents medians of stated certainty equivalents for experts and laymen across different
probabilities P and measures of expertise. In addition, it contains the corresponding z‐scores of
Wilcoxon's rank‐sum tests to analyze differences in certainty equivalents between experts and
laymen.

For all three measures of perceived expertise, experts value the proposed risky prospects
differently than laymen. For P {1%, 5%, 10%}∈ , certainty equivalents of laymen are typically
larger than those of their expert counterparts. For P {90%, 95%, 99%}∈ , certainty equivalents of
laymen are mostly smaller than those of experts. These differences are statistically significant
for almost all values of P for the self‐assigned and subjective expertise measures and only
significant for the lowest value of P for the objective expertise measure. Virtually no differences
in stated certainty equivalents can be detected for any measure of expertise at the expected
inflection point (P = 40%). These raw results provide initial evidence that probabilities in

9
This assumption is supported by findings obtained in Experiment II, which was designed to allow for a joint identification of the value function parameter and

the degree of probability weighting. Neither the median nor the mean of the estimated value function parameter is significantly different from one in the gain

domain. This also holds for perceived experts and perceived laymen separately. Furthermore, we observe a very high correlation between the elicited degree of

probability weighting based on estimated or assumed (α = 1) value function parameters (ρ = 0.953).
10
In an unreported robustness test, we assume parameters implying concavity of the value function (α {0.76, 0.88}∈ ; see, e.g., Kilka & Weber, 2001). The

obtained results are qualitatively unchanged.
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decisions under risk are weighted differently by perceived experts than by perceived laymen,
even though the outcome of the underlying risky prospects is independent of expertise.

3.2.2 | Differences in probability weighting estimates

We start our analyses by pooling all subject‐gamble observations and compare the elicited
probability weighting function parameters between the respective expert and laymen groups.
Figure 1 illustrates median estimates as well as 95% confidence intervals for experts and laymen
across our three different measures of expertise. Standard errors are bootstrapped at the subject
level to account for the inherent estimation uncertainty in our γ‐estimates (10,000 bootstrap
replications). For all subgroups, we observe curvature values between 0 and 1, indicating the
typical inverse S‐shape of the probability weighting function. Hence, all subgroups engage in
overweighting low (tail) probabilities and underweighting high probabilities.

However, the degree of probability weighting differs between experts and laymen. While
γ for self‐assigned and subjective laymen is about 0.7, the corresponding experts exhibit a
significantly larger value (about 0.85; p < 0.01). We do not observe significant differences in
probability weighting for our measure of objective expertise.

These results suggest that, first, subjects with lower levels of perceived expertise exhibit
more pronounced inverse‐S‐shaped probability weighting. As subjects are explicitly provided
with outcomes and objective probabilities, that is, all relevant information for making the
underlying risky choices, the difference in probability weighting due to variation in perceived
expertise constitutes ignorance illusion. Second, ignorance illusion is particularly severe when

TABLE 3 Certainty equivalents for experts and laymen by probability and measure of expertise

P

1% 5% 10% 40% 90% 95% 99%

Self‐assigned expertise

Laymen 5 10 12 40 85 90 96

Experts 3 6 11 40 90 95 99

z‐score 1.78* 1.95* 1.37 −1.47 −3.99*** −4.53*** −2.66***

Subjective expertise

Laymen 5 10 14 40 85 90 96

Experts 3 6 11 40 89 94 99

z‐score 2.29** 1.86* 1.95* −0.70 −2.68*** −3.94*** −3.37***

Objective expertise

Laymen 6 10 12 40 85 90 95

Experts 5 10 12 40 85 90 97

z‐score 1.69* 1.46 0.31 0.63 0.15 0.31 −0.97

Note: The median certainty equivalents for experts and laymen for each probability P and for all three measures of expertise
(self‐assigned, subjective, or objective) are reported. The z‐scores of Wilcoxon's rank‐sum tests conducted to compare the
certainty equivalents of experts and laymen are also provided. ***, **, and * indicate significant differences in medians across
subgroups at the 1%, 5%, and 10% levels, respectively.
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the employed expertise measure most directly reflects a subject's very own opinion about her
level of expertise (difference in γ is largest for self‐assigned expertise). More indirect measures
of perceived expertise based on subjective assessments or objective knowledge seem to be less
powerful in this respect.11

We next conduct a within‐subjects analysis to explore how a change in perceived expertise
affects the degree of probability weighting at the subject level. To this end, we regress γ on our
measures of expertise while controlling for subject fixed effects. We thereby compare estimated
γ‐values for the very same subject if the level of perceived expertise changes across gambles.
This allows us to rule out unobserved individual traits as explanation for the expertise‐
dependent differences in probability weighting.

For a meaningful comparison of the obtained regression coefficients across our measures of
expertise, we need to eliminate the inequality of the underlying scales and potential differences
in responsivity at the individual level. We therefore conduct a within‐subjects z‐transformation
which expresses each individual's perceived expertise regarding a gamble relative to her mean
and standard deviation across gambles (Bush et al., 1993). This transformation of raw scores is
accomplished for each subject and expertise measure by, first, subtracting a subject's mean

FIGURE 1 Probability weighting function γ‐estimates for experts and laymen. This figure shows the median γ‐
values from estimating Prelec (1998) one‐parameter weighting functions and their 95% confidence interval for experts
and laymen. Expert and layman classifications are based on the respective measure of expertise (self‐assigned,
subjective, or objective). Differences in medians are assessed with quantile regressions using bootstrapped standard
errors clustered at the subject level based on 10,000 bootstrap replications. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively.

11
Figure E.1 in Supporting Information Appendix E shows how the observed differences in γ ‐estimates affect the shape of the respective probability weighting

functions. For the groups of self‐assigned experts, the weighting function is noticeably closer to the identity than for their laymen counterparts. For subjective

experts this effect also exists but is less pronounced. No effect is observed for objective experts.
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perceived expertise across gambles and, second, dividing by a subject's standard deviation.
Within subjects, all transformed measures have a mean of 0 and a standard deviation of 1.

As a consequence, we yield an identical interpretation of the estimated coefficients.
Regardless of the considered measure, the coefficient describes how much an individual's
γ‐estimate changes on average when the individual's perceived expertise increases by one
standard deviation. Table 4 reports the estimated regression coefficients for all three standar-
dized measures of expertise. To ensure that the pool of subjects used for identification (i.e.,
those with variation in perceived expertise across gambles) remains constant, only subjects are
considered who display variation in perceived expertise across gambles in all three measures.12

Across expertise measures we find a positive and significant influence on the curvature
parameter γ , indicating less pronounced inverse‐S‐shaped probability weighting for higher levels
of perceived expertise even when we control for subject fixed effects. Therefore, we conjecture
that differences in probability weighting cannot solely be attributed to general subject‐specific
differences in probability processing, but instead also exist for the very same subject when the
level of perceived expertise varies. Thus, we can identify the impact of perceived expertise on
probability weighting, that is, ignorance illusion, both between and within subjects.

The results also lend further support to the notion that an individual's self‐perception
matters the most when it comes to ignorance illusion in decisions under risk. This is indicated
by the larger coefficient for self‐assigned expertise compared with the other measures.
Increasing self‐assigned expertise by one standard deviation raises γ by 0.026 on average.
In contrast, a one standard deviation increase in subjective (objective) expertise leads to an
average γ‐increase of 0.020 (0.018). The implied reduction in probability weighting is therefore
about 30% (44%) larger for the most direct assessment of an individual's perceived expertise
compared with the more indirect subjective (objective) measure.

3.2.3 | Importance of self‐perception

To further strengthen our argument that a subject's perception of her own expertise is the
driver of the observed differences in probability weighting, we examine the behavior of subjects
for which perceived expertise and actual expertise diverge for a given gamble. To this end, we
introduce a fourth measure of expertise, misperceived expertise, to identify subjects who have
erroneous beliefs about their level of actual expertise.

Misperceived expertise is measured as a score which is increased by one if a subject
answered a knowledge question regarding a gamble incorrectly but assigned a confidence
rating of six or higher to the provided answer. For each knowledge question that is answered
correctly while carrying a confidence rating of two or lower, the score is decreased by one.
Hence, a subject's misperceived expertise score for a given gamble can range between ‐4 and
+4. Positive scores are indicative for misperceived experts because they reveal a tendency to
be highly confident in the provided answers even though they are incorrect
(58 observations, 15%). In contrast, negative scores are characteristic of misperceived laymen
as they indicate a lack of confidence in the provided answers even though they are correct
(340 observations, 85%).

12
Robustness tests show that the results remain virtually unchanged if we include the whole sample of observations (not reported).
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Analogous to the within‐subjects analyses in the previous section, we first standardize
our measure of misperceived expertise by conducting a within‐subjects z‐transformation
(see Section 3.2.2 for details). Next, we regress the estimated γ‐values on our standardized
measure of misperceived expertise while including subject fixed effects. Hence, we examine the
impact of a change in misperceived expertise on γ within subjects, thereby ruling out subject‐
specific differences as the driver of our results.

Column (1) of Table 5 presents the results from this regression. The estimated regression
coefficient is positive and significant (p < 0.10). A one standard deviation increase in an in-
dividual's misperceived expertise relates to an average increase in γ of 0.015. Misperceived
experts exhibit comparably less pronounced inverse‐S‐shaped probability weighting than
misperceived laymen. Even though the effect is smaller compared with the one established for
objective expertise (about 0.019, based on the same sample of 360 observations), it is still
surprisingly large, given that misperceived expertise can only increase with high confidence in
incorrect answers.

These results suggest that it is not objectively verifiable gamble‐specific expertise that
mitigates probability weighting, but rather a subject's perception of her own expertise. In line
with this, misperceived experts rated their self‐assigned expertise on average 2.1 points higher
on the 7‐point Likert scale than misperceived laymen (p < 0.01), indicating that subjects
indeed consider themselves to be experts regarding the gamble despite their lack of actual
expertise. Hence, we identify differences in perceived expertise as the key driver of ignorance
illusion.

As misperceived experts (laymen) can be characterized as being overconfident
(underconfident) with respect to their actual expertise, these results could also be interpreted
as evidence for the fact that probability weighting decreases in overconfidence. We
therefore conduct a robustness test only including subjects whose actual performance on

TABLE 4 Impact of perceived expertise on probability weighting within subjects

Dependent variable γ

(1) (2) (3)

Self‐assigned expertise 0.026***

(0.007)

Subjective expertise 0.020***

(0.007)

Objective expertise 0.018**

(0.009)

Constant Yes Yes Yes

Subject fixed effects Yes Yes Yes

N 392 392 392

Adj. R2 0.68 0.68 0.67

Note: Coefficients from ordinary least squares regressions are reported. The curvature parameter γ of the Prelec (1998)
one‐parameter weighting function is regressed on the respective standardized measure of expertise (self‐assigned, subjective, or
objective). Subject fixed effects are included. Bootstrapped standard errors (in parentheses) are clustered at the subject level and
based on 10,000 bootstrap replications. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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the knowledge questions is in line with their confidence in the provided answers (not re-
ported). The results indicate that the impact of perceived expertise is also present among
well‐calibrated subjects. As these subjects do not exhibit a mismatch between actual and
perceived expertise, overconfidence cannot explain this finding. In contrast, higher self‐
perceived expertise can accommodate both results.

3.2.4 | Role of experience

Previous studies suggest that individuals are less prone to behavioral biases as experience intensifies
(List, 2003, 2004). Because experience and perceived expertise are likely to be positively correlated,
we need to rule out variation in experience as an alternative explanation for our findings.

We measure experience as a binary variable that is equal to 1 if a subject has ever played the
respective gamble and is 0 otherwise. Regressing γ on experience yields a positive and significant
coefficient (p < 0.01), indicating that experienced subjects display less pronounced inverse‐S‐
shaped probability weighting even in our descriptive setting (Column (2) of Table 5.). Column (3)
includes the standardized measure of self‐assigned expertise in the regression, in which case
experience becomes insignificant, while the coefficient for the expertise measure is positive and
significant (p < 0.05). Hence, we also document the mitigating impact of self‐assigned expertise
on probability weighting when controlling for a subject's experience regarding a gamble.

Next, we scrutinize the impact of variation in perceived expertise that is unrelated to ex-
perience. To this end, we first regress the standardized self‐assigned expertise measure on

TABLE 5 Impact of perceived expertise on probability weighting within subjects: The role of misperceived
expertise and experience

Dependent variable γ

(1) (2) (3) (4) (5)

Misperceived expertise 0.015*

(0.008)

Experience 0.033*** −0.011 0.027*

(0.013) (0.027) (0.014)

Self‐assigned expertise 0.031**

(0.015)

Self‐assigned expertise (beyond experience) 0.036** 0.031**

(0.015) (0.015)

Constant Yes Yes Yes Yes Yes

Subject fixed effects Yes Yes Yes Yes Yes

N 360 392 392 392 392

Adj. R2 0.67 0.68 0.68 0.68 0.68

Note: Coefficients from ordinary least squares regressions are reported. In Column (1) the curvature parameter γ of the
weighting function is regressed on misperceived expertise. In columns (2)–(5), γ is regressed on experience and/or self‐assigned
expertise. Subject fixed effects are included. Bootstrapped standard errors (in parentheses) are clustered at the subject level and
based on 10,000 bootstrap replications. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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experience. Residuals from that regression are uncorrelated with experience, that is, they only
contain variation in expertise that cannot be explained by differences in experience. We therefore
refer to these residuals as “self‐assigned expertise (beyond experience).” Column (4) of Table 5
presents results from regressing γ on self‐assigned expertise (beyond experience). The obtained
coefficient is positive, significant (p < 0.05), and even larger in size compared with our previous
analyses. Column (5) shows that this result holds regardless of whether experience is added as a
control variable or not. Thus, we can replicate the mitigating effect of self‐assigned expertise on
probability weighting when only exploiting variation in expertise that is unrelated to experience.

Our findings suggest that experience does not seem to be the driver of the mitigating influ-
ence of perceived expertise on probability weighting. Instead, we provide evidence that perceived
expertise mitigates the degree of inverse‐S‐shaped probability weighting beyond experience.

In summary, we provide experimental evidence that risk does not constitute a unique
source of uncertainty. Instead, we find that the processing of objective probabilities in purely
random gambles depends on subjects' levels of perceived expertise. Lower levels of perceived
expertise regarding a risky event increase inverse‐S‐shaped probability weighting. Because in
our experiment all probabilities are explicitly provided and outcomes are independent of
knowledge, our results suggest that individuals are subject to ignorance illusion in decisions
under risk.

4 | EXPERIMENT II

4.1 | Methodology

4.1.1 | Experimental design

The results from Experiment I indicate that an individual's perceived expertise regarding a
decision under risk affects the degree of probability weighting. Subjects who assign themselves
lower levels of expertise distort objective probabilities more than subjects with higher self‐
assigned expertise. We conduct Experiment II to explore whether manipulating the wrongly
assigned importance of perceived expertise in the decision‐making process alters the degree of
probability weighting, that is, the presence of ignorance illusion. In addition, we examine
whether ignorance illusion also occurs in the domain of losses and scrutinize the robustness of
our findings by employing estimated in addition to assumed value function parameters.

To this end, we ran an online experiment with 101 subjects, with the majority being
students at a German university. 42% of our participants are female, 46% have a Bachelor's
degree, and the average age is 31 years. Completion time of the experiment was about 40 min,
and subjects' choices were incentivized. As a thank you for participation, each subject took part
in a lottery with the chance of winning one of two shopping vouchers worth 50 €. In addition,
subjects were told upfront that four participants would be randomly selected after the ex-
periment to have one of their (randomly selected) decisions played out for real money. Ex-
perimental currency units (ECU) were transformed using a 4:1 conversion rate (i.e., 100 ECU
equal 25 €). The average payout amounted to 11.19 €.

To be able to ask additional questions to test our hypothesis in the loss domain and to
estimate value function parameters, we needed to reduce the number risky choices compared
with Experiment I. Hence, subjects were no longer confronted with three different random
gambles but only made choices involving roulette. We chose roulette because it showed the

50 | BAARS AND GOEDDE‐MENKE



strongest balance in terms of perceived experts and laymen in Experiment I and was therefore
expected to yield reasonable group sizes also in Experiment II.

As before, subjects had to first fill out the questionnaire before receiving a short in-
troduction of the gamble. In the gain domain, subjects then had to indicate certainty equiva-
lents for binary prospects, in which they could either win 100 ECU with seven different
probabilities P {1%, 5%, 10%, 40%, 90%, 95%, 99%}∈ or receive 0 ECU otherwise. In the loss
domain, subjects were first endowed with 100 ECU. They then had to indicate certainty
equivalents for binary prospects, in which they could either lose 100 ECU with seven different
probabilities P {1%, 5%, 10%, 40%, 90%, 95%, 99%}∈ or lose 0 ECU otherwise. Again, the
probabilities were first described in terms of specific game situations (see Table 6) and then
stated explicitly. The domains and the order of probabilities within a domain were randomized.

In the gain domain, we elicited certainty equivalents analogous to Experiment I, that is,
subjects made a series of choices between accepting a risky prospect or a sure payment (see
Section 3.1.1 for details). In the loss domain, the procedure is largely identical with one ex-
ception: Instead of allowing subjects to indicate their choice between accepting the presented
risky prospect or receiving a sure payment of X ECU, they had to indicate their choice between
accepting the risky prospect or paying a sure fee of X ECU to avoid it. Note that while this
amount is negative, we always consider its absolute value whenever we refer to certainty
equivalents in the loss domain.

In addition to these roulette‐specific choices in the gain and loss domain, we needed to
include additional prospects enabling us to estimate a subject's value function parameters. We
follow Abdellaoui et al. (2011) and employ the three‐stage elicitation method described in
Abdellaoui et al. (2008) based on the thirteen prospects described in Table 7. The assumed
power value function for gains is defined by v x x( ) = α (cf. Experiment I) and for losses by
v x λ x( ) = − (− )β with α β λ, , > 0. Six prospects are used to estimate α (β), that is, the curvature
of the value function in the gain (loss) domain. One additional mixed prospect was used to
derive the loss aversion coefficient λ. Probability Pg is set to 40%, probability Pl to 60% (=1−Pg),
and G* to 50. The order of domains and the order of prospects within a domain was
randomized.

After eliciting the certainty equivalents (CEi) for the six gain prospects (xi, Pg; yi), the above
parametric specification yields the following equation:

TABLE 6 Complementary descriptions of specific game situations in roulette to illustrate objective
probabilities

P Game situation

1% Win at least 7 times in 45 consecutive rounds, each time betting on a Cheval

5% Win at least 15 times in 88 consecutive rounds, each time betting on a Carré

10% Win at least 10 times in 59 consecutive rounds, each time betting on a Carré

40% Win at least 3 times in 21 consecutive rounds, each time betting on a Carré

90% Win at most 9 times in 59 consecutive rounds, each time betting on a Carré

95% Win at most 14 times in 88 consecutive rounds, each time betting on a Carré

99% Win at least 2 times in 79 consecutive rounds, each time betting on a Transversale Plein
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where α and w (P )+
g are estimated through nonlinear least squares. w (P )+

g reflects the impact of
probability weighting at probability Pg. Keeping probability Pg fixed at only one point has the
advantage that only one point of the probability weighting function plays a role in the process
of estimating the value function parameters (Abdellaoui et al., 2008). By including the decision
weight as an additional parameter that has to be estimated, no assumptions regarding the
functional form of a subject's probability weighting are required. Hence, the value function
parameters can be estimated without specifying the probability weighting function, while still
taking individual heterogeneity in probability weighting into account.

To elicit β, that is, the value function parameter in the loss domain, the procedure is largely
similar. After eliciting the certainty equivalents for the six loss prospects (xi, Pl; yi) for which
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where β and w (P )−
l are to be estimated. w (P )−

l reflects the impact of probability weighting at
probability Pl. Note that in this setup the loss aversion parameter λ cancels out and therefore
plays no role when estimating β. We winsorize α and β at the 1st and 99th percentiles.

To explore whether manipulating subjects' wrongly assigned importance of perceived ex-
pertise affects the presence of ignorance illusion, we randomly assigned participants to one of
three groups. In the control group (C), the experiment was conducted as described above and
no additional information was provided.

In the first treatment group (T1), we aimed at making the implicit assumption underlying
ignorance illusion explicit. Thus, we provided subjects with additional statements that en-
couraged making use of individual expertise regarding roulette when making their choices (see
Table 8 for details). Since we are merely emphasizing the role of perceived expertise which
subjects seem to assign to it themselves, we expect to observe a similar difference in probability
weighting between experts and laymen in the first treatment and in the control group.

Subjects in the second treatment group (T2) were provided with additional statements that
highlighted the irrelevance of individual expertise regarding roulette in the respective choices
instead. By stating that roulette outcomes are independent of expertise and that laymen have no
disadvantage compared with perceived experts when making the decisions, we intended to
disable the expertise‐related mechanism underlying ignorance illusion. We therefore expect
that the degree of probability weighting does not differ between experts and laymen, that is,
that we do not observe ignorance illusion for the second treatment group.

The final part of the experiment consisted of an additional questionnaire regarding a
subject's cognitive abilities, overconfidence, self‐distancing, and personal information. Fur-
thermore, we included a binary item as manipulation check to evaluate whether subjects
believed that their expertise regarding roulette was helpful when making the respective choices.

TABLE 7 Risky prospects underlying the estimation of value function parameters

Gain domain Loss domain Mixed

i 1 2 3 4 5 6 7 8 9 10 11 12 13

xi 20 40 60 100 100 100 −20 −40 −60 −80 −100 −100 50

yi 0 0 0 0 60 80 0 0 0 0 −60 −80 *
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The translated experimental instructions and questionnaires are provided in Supporting In-
formation Appendix B.

4.1.2 | Data and variables

We obtain data on participants' certainty equivalents in two subsequent stages, both comprised
of prospects in the gain and loss domain. First, we elicit 13 certainty equivalents required to
estimate the parameters of the value function (six for each domain plus one for determining the
loss aversion parameter). Second, 14 certainty equivalents are elicited to derive the probability
weighting function parameters (seven for each domain). We apply the same inclusion criteria
as in Experiment I to both stages. As the value function parameters are needed inputs when
fitting the probability weighting functions, only subjects who provided valid answers in both
stages within a domain can be included in the final sample (91 different subjects; 146 ob-
servations, 80 in the gain domain, 66 in the loss domain).

As we identified the key role of self‐assigned expertise for ignorance illusion in decisions
under risk in Experiment I, we exclusively focus on this measure in Experiment II. This
decision is also based on the chosen treatments, which focus on highlighting or downplaying
the role of perceived expertise in the decision‐making process. Identical to Experiment I, we
measure self‐assigned expertise as a subject's answer to the question whether she considers
herself to be an expert in the respective gamble (rated on a 7‐point Likert scale, where a higher
value indicates a higher self‐assigned expertise). Self‐assigned expertise across subjects is 3.32
on average (standard deviation: 1.77; minimum: 1; maximum: 6). Subjects are classified as self‐
assigned experts in roulette if they rated their expertise as four or higher (46%) and as self‐
assigned laymen otherwise (54%). The share of expert and layman observations within domains
is almost identical (gain domain: 45% vs. 55%; loss domain: 47% vs. 53%).

TABLE 8 Treatment‐specific information regarding the role of perceived expertise

Statement 1 (after instructions) Statement 2 (before each domain)

Treatment 1 “You can make use of your individual expertise
regarding the gamble roulette to work
through the following decision situations as
good as possible. Try this even if you never
or rarely played roulette and would not
consider yourself an expert in roulette.”

“Make use of your expertise regarding
roulette when answering the
questions.”

Treatment 2 “Note that in the following decision situations
all probabilities are explicitly provided, and
that the outcome of the gamble roulette is
independent of individual expertise. Hence,
laymen in roulette can make as good
decisions as players who would consider
themselves experts.”

“Whether or not you have expertise
regarding roulette should not affect
how you answer the questions.”

Note: Statement 1 was included at the end of the roulette instructions (after the sentence: “State for every decision situation
whether you prefer participating in roulette or the sure payment.”). Statement 2 was included at the beginning of the gain and
loss domain, after the introduction of the respective domain and before making the first choice in the domain.
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4.1.3 | Estimation of probability weighting functions

We first estimate subjects' value function parameters utilizing the 13 first‐stage certainty
equivalents. The power estimates of the value function exhibit considerable heterogeneity
(Q = 0.69α

0.05 ; Q = 1.56α
0.95 ; Q = 0.74β

0.05 ; Q = 2.10β
0.95 ) with a median close to one in both do-

mains (Q = 1.02α
0.50 ; Q = 1.08β

0.50 ). For gains (losses), the value function is concave if α < 1

(β > 1), linear if α = 1 (β = 1), and convex if α > 1 (β < 1). Next, we employ these estimates to
derive seven decision weights per subject and domain as follows:
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As in Experiment I, we employ the Prelec (1998) one‐parameter weighting function
w e(P) = ln−(− (P))γ, where γ > 0 determines the curvature and γ0 < < 1 results in the typical
inverse S‐shape of this function. The weighting function parameter is estimated individually for
each participant and each domain using nonlinear regressions. We winsorize the estimated
parameters at the 1st and 99th percentiles.

To evaluate how the estimation of γ based on an assumed value function parameter (α = 1)
employed in Experiment I compares with an estimated value function parameter (being the
default in Experiment II), we additionally fit probability weighting functions based on assumed
value function parameters as described in Section 3.1.3 (with α = 1 and β = 1). For reasons of
comprehensibility, we will generally refer to using estimated (assumed) value function para-
meters as the αestimated (αassumed) specification, although it equally concerns the curvature eli-
citation of the value function in the gain domain (α) and the loss domain (β).13

Again, we repeat our main analyses using the nonparametric approach proposed by
Dimmock et al. (2020) (cf. Supporting Information Appendix C) or the Prelec (1998) two‐
parameter weighting function (cf. Supporting Information Appendix D). Both robustness tests
leave our findings qualitatively unchanged.

4.2 | Results

4.2.1 | Differences in certainty equivalents

Table 9 presents medians of stated certainty equivalents for self‐assigned experts and laymen
across different probabilities P, separately for the control and treatment groups. In addition, it
contains the corresponding z‐scores of Wilcoxon's rank‐sum tests to analyze differences in
certainty equivalents between experts and laymen.

Differences in certainty equivalents between experts and laymen in the control (C) and first
treatment group (T1) are, as expected, highly similar and support the findings established in
Experiment I. While experts state significantly smaller certainty equivalents for low prob-
abilities (P < 40%) than laymen, they provide comparatively larger certainty equivalents for
high probabilities (P > 40%). Only minor differences in stated certainty equivalents can be
detected for P = 40%.

13
In unreported robustness tests, we also fit probability weighting functions using homogeneous value function parameters across subjects and domains with

α β, {0.76, 0.88}∈ . These alternative specifications leave our results virtually unchanged.
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The similarity between the control and the first treatment group suggests that we indeed
simply made the implicit assumption employed by the control group (“perceived expertise
matters”) explicit for subjects in the first treatment group. Median certainty equivalents stated
by experts (laymen) in the control group do not significantly differ from the ones provided in
the first treatment group for any probability level. Hence, neither experts nor laymen changed
their behavior in response to the first treatment. The answers to our question serving as
manipulation check confirm this. In the control group, 52% of subjects believed that expertise
regarding roulette was helpful when making the respective choices. In the first treatment
group, this proportion amounts to 57%, which is not significantly different from the proportion
in the control group. For these reasons, we will pool all subjects from the control (C) and the
first treatment (T1) groups in the further analyses, forming an extended control group.

In contrast, the expert and laymen valuations of the proposed risky prospects in the second
treatment group (T2) substantially differ from the other groups. By emphasizing that roulette
outcomes are independent of expertise and by highlighting that laymen have no disadvantage
compared with perceived experts when making the decisions, we affected the behavior of both
experts and laymen. For small probabilities, median certainty equivalents stated by experts are
significantly larger compared with experts from other groups (p < 0.01), while they are similar
for high probabilities. This pattern suggests that experts in the second treatment group behave
more like laymen in the other groups, particularly for small probabilities. At the same time,
median certainty equivalents stated by laymen are significantly smaller compared with laymen
from other groups for small probabilities (p < 0.05), while they are similar for high prob-
abilities. Hence, laymen show a tendency to behave more like experts when confronted with
small probabilities. As a result, the differences in median certainty equivalents between

TABLE 9 Certainty equivalents for experts and laymen by control and treatment groups

P

1% 5% 10% 40% 90% 95% 99%

Control

Laymen 2 8 11 40 85 92 97

Experts 1 5 9 38 88 92 97

z‐score 3.27*** 3.21*** 3.41*** 0.70 −0.65 −0.34 −0.89

Treatment 1

Laymen 3 7 12 39 86 92 96

Experts 1 5 10 39 89 94 98

z‐score 4.14*** 4.46*** 5.11*** −0.32 −2.08** −1.37 −1.07

Treatment 2

Laymen 2 5 10 39 87 92 97

Experts 3 8 14 40 86 93 97

z‐score −1.09 −2.92*** −3.30*** −1.71* 0.05 −0.19 −0.11

Note: The median certainty equivalents for experts and laymen for each probability P within the respective control and
treatment groups are reported. The z‐scores of Wilcoxon's rank‐sum tests conducted to compare the certainty equivalents of
experts and laymen within a group are also provided. ***, **, and * indicate significant differences in medians across subgroups
at the 1%, 5%, and 10% levels, respectively.
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experts and laymen are considerably smaller compared with the other groups, providing
first evidence for the effectiveness of our second treatment. The effectiveness of the treat-
ment is also underlined by answers to our question serving as manipulation check. None of
the subjects (0%) in the second treatment group believed that expertise regarding roulette
was helpful when making the respective choices. This proportion is significantly smaller
than in the other groups (p < 0.01).

4.2.2 | Differences in probability weighting estimates

To scrutinize the existence of ignorance illusion across the extended control and second
treatment groups, we now compare the elicited probability weighting function parameters
between self‐assigned experts and laymen. Figure 2 illustrates median γ‐estimates for both
groups. The bar charts in the top row show γ‐values based on the estimated value function
parameters (αestimated specification), the bar charts in the bottom row based on assumed value
function parameters (αassumed specification).

The left bar chart in the top row of Figure 2 shows median γ‐values for experts and laymen
in the extended control group (C and T1). As γ is smaller than one for experts and laymen, both
probability weighting functions exhibit the typical inverse S‐shape. Hence, low (tail) prob-
abilities are overweighted and high probabilities are underweighted regardless of the level of
perceived expertise. However, experts engage much less in probability weighting than laymen
as indicated by the significantly larger γ (0.92 vs. 0.81; p < 0.01). These results confirm the
presence of ignorance illusion in decisions under risk as established in Experiment I. Utilizing
curvature estimates based on assumed value function parameters (left bar chart in the bottom
row) yields the same conclusion (0.95 vs. 0.85; p < 0.05).

Ignorance illusion is present in both domains, as the middle bar charts in the top row indicate.
However, the difference in γ is more pronounced in the gain domain (0.96 vs. 0.81; p < 0.05) than
in the loss domain (0.87 vs. 0.80; p < 0.10). When considering curvature estimates based on
assumed value function parameters (middle bar charts in the bottom row), the results are similar.
Again, the degree of ignorance illusion is more pronounced in the gain domain (0.97 vs. 0.85;
p < 0.05) than in the loss domain (0.89 vs. 0.82; p < 0.10).

The right bar chart in the top row of Figure 2 presents median γ‐values for experts and
laymen in the second treatment group (T2). The results speak to the effectiveness of the
treatment designed to disable the expertise‐related mechanism underlying ignorance illusion.
The estimated curvature of the probability weighting function is no different for experts than
for laymen (0.83 vs. 0.84; p = 0.87). In fact, experts and laymen exhibit almost equally pro-
nounced inverse‐S‐shaped probability weighting.14 This equality is largely induced by the ex-
perts in the second treatment group as they display amplified inverse‐S‐shaped probability
weighting compared with experts in the other groups (p < 0.05). In addition, laymen engage
slightly less in probability weighting compared with laymen from the other groups (p = 0.23).
In combination, these changes caused ignorance illusion to fully diminish. This result is
confirmed when considering curvature estimates based on assumed value function parameters
(right bar chart in the bottom row; 0.83 vs. 0.87; p = 0.58). Hence, when subjects are made
aware of the irrelevance of perceived expertise in decisions under risk, they do not exhibit

14
This result also holds when considering the gain and loss domain separately. Median γ ‐values for experts and laymen in the second treatment group are not

significantly different within each domain (p > 0.10). For reasons of comprehensibility, we refrained from including the corresponding bar charts in the figure.

56 | BAARS AND GOEDDE‐MENKE



ignorance illusion anymore. Consequently, perceived experts process objective probabilities in
the same manner as subjects who perceive themselves as laymen.15

Next, we explore the marginal impact of perceived expertise on probability weighting across the
extended control and second treatment groups. Table 10 reports the results from regressing γ on self‐
assigned expertise. In all four regression models, we interact our raw self‐assigned expertise measure
with a dummy variable (Treatment 2) that equals 1 for all subjects from the second treatment group
(T2) and is 0 otherwise. The interaction effect therefore describes the difference in marginal impact of
perceived expertise on probability weighting between the second treatment group and the extended
control group (C and T1). As a robustness test, models (2) and (4) additionally include a dummy
variable (Loss domain) that equals 1 for γ‐estimates in the loss domain and is 0 otherwise. Models (1)
and (2) employ γ‐values based on estimated value function parameters (αestimated), while models (3)
and (4) utilize γ‐values based on assumed value function parameters (αassumed).

FIGURE 2 Probability weighting function γ‐estimates for experts and laymen by control and treatment groups.
This figure shows the median γ‐values from estimating Prelec (1998) one‐parameter weighting functions and their
95% confidence interval for experts and laymen, separately for the extended control and second treatment groups and
both α‐specifications employed (αestimated, αassumed). Expert and layman classifications are based on the self‐assigned
measure of expertise. Extended control refers to subjects from the extended control group (C and T1). Treatment 2

refers to subjects from the second treatment group (T2). Differences in medians are assessed with quantile
regressions using bootstrapped standard errors clustered at the subject level based on 10,000 bootstrap replications.
***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

15
Figure E.2 in Supporting Information Appendix E nicely illustrates this effect by comparing the plots of the expertise‐dependent probability weighting

functions of the second treatment group with those of the other groups.
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The significant (p < 0.01) and positive coefficient of self‐assigned expertise across models
confirms the existence of ignorance illusion for subjects in the extended control group. If self‐
assigned expertise increases by one unit (on a 7‐point scale), γ increases by about 0.03 on
average, indicating less pronounced inverse‐S‐shaped probability weighting. In contrast, due to
the slightly larger, negative, and significant (at least p < 0.10) interaction effect of self‐assigned
expertise with belonging to the second treatment group, the marginal impact of perceived
expertise on probability weighting completely vanishes for the second treatment group. Hence,
subjects in the second treatment group do not exhibit ignorance illusion, confirming the results
from above. Furthermore, the positive and sometimes significant coefficient for Treatment 2
indicates that laymen in the second treatment group engage slightly less in probability
weighting than laymen in the extended control group.

Given that our conclusions regarding the impact of perceived expertise on probability
weighting are independent of whether estimated or assumed value function parameters are
employed, it can be argued that both approaches produce consistent and reliable results, thus
justifying the use of the latter in Experiment I.

In summary, the findings from Experiment II further support the fact that decision makers
are generally subject to ignorance illusion in decisions under risk. Lower levels of perceived
expertise amplify the typical pattern of underweighting high, and overweighting small (tail)
probabilities. This phenomenon occurs in both the gain and the loss domain, but is more
pronounced in the former. Perceived expertise can therefore be seen as counter‐bias me-
chanism that facilitates a more linear, that is, rational processing of objective probabilities.
Informing decision makers about the irrelevance of perceived expertise in decisions under risk

TABLE 10 Impact of perceived expertise on probability weighting within subjects by control and treatment
groups

Dependent variable γαestimated γαassumed

(1) (2) (3) (4)

Self‐assigned expertise 0.028*** 0.030*** 0.028*** 0.029***

(0.007) (0.007) (0.006) (0.006)

Treatment 2 0.081 0.095 0.125** 0.134**

(0.073) (0.068) (0.060) (0.057)

Treatment 2 × Self‐assigned expertise −0.029* −0.033** −0.039*** −0.042***

(0.017) (0.017) (0.014) (0.014)

Loss domain −0.063*** −0.039**

(0.022) (0.018)

Constant Yes Yes Yes Yes

N 146 146 146 146

Adj. R2 0.05 0.09 0.08 0.09

Note: Coefficients from ordinary least squares regressions, separately for both α‐specifications employed (αestimated, αassumed) are
reported. The curvature parameter γ of the Prelec (1998) one‐parameter weighting function is regressed on the raw
self‐assigned measure of expertise. Treatment 2 is a dummy variable that equals 1 for subjects in the second treatment group
(T2) and is 0 for subjects in the extended control group (C and T1). Bootstrapped standard errors (in parentheses) are clustered
at the subject level and based on 10,000 bootstrap replications. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.
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eliminates ignorance illusion. However, such a treatment does not facilitate perceived laymen
to distort probabilities less and behave more like perceived experts. Instead, it causes perceived
experts to farther astray from rational decision making and behave more like perceived laymen.

5 | CONCLUSION

This paper provides experimental evidence that individuals exhibit more pronounced inverse‐S‐
shaped probability weighting if their level of perceived expertise is lower regarding a decision under
risk. To vary the level of perceived expertise in a purely random decision situation, we utilize different
gambles for which outcomes are independent of knowledge. Our results indicate that, even though
objective probabilities and hence all relevant information are explicitly provided for all gambles, the
curvature of a subject's probability weighting function decreases in a subject's perceived expertise.
Thus, individuals overweight low (tail) probabilities and underweight high probabilities more
strongly if they feel less knowledgeable about a decision involving outcomes that are random.

Our results point to an overarching importance of perceived expertise across sources of un-
certainty. The fact that differences in perceived expertise alter how individuals process objective
probabilities suggests that individuals are subject to ignorance illusion in decisions under risk.
These findings build on the already established impact of perceived expertise on ambiguity
attitudes (Abdellaoui et al., 2011; Fox & Tversky, 1995; Heath & Tversky, 1991) and extend it to the
domain of risk. Regardless of whether an individual is facing a decision under risk or ambiguity,
higher levels of perceived expertise cause individuals to weight probabilities less strongly and
thereby affect the attractiveness of uncertain alternatives. This insight is important as in many
real‐world investment and insurance contexts it is unclear whether and to what extent the
decision maker is informed about the outcomes' probability distributions (Jaspersen, 2016).

Our findings imply that the domain of risk does not constitute a unique source of un-
certainty which contradicts an important assumption that is commonly made in current
decision‐making models (Abdellaoui et al., 2011; Chew & Sagi, 2008; Ergin & Gul, 2009; Nau,
2006). Rather than only allowing probability weighting functions to vary in the domain of
ambiguity, it seems required to model the same degree of freedom in the domain of risk.
Developing a framework that incorporates the idea of expertise‐dependent weighting functions
seems advisable. This might also help to better explain differences in investment and insurance
behavior caused by the perception of one's own expertise.

Our research also relates to the link between cognitive uncertainty and probability weighting
recently proposed by Enke and Graeber (2021). They provide evidence that individuals who
perceive their answer to a decision problem (such as stating a certainty equivalent for a price list)
as more cognitively noisy (larger interval surrounding the stated certainty equivalent) exhibit
stronger inverse‐S‐shaped probability weighting. If one assumes that perceived experts regarding
a decision under risk are able to state their certainty equivalents with higher precision (being
exposed to less cognitive uncertainty), our results are in line with the Enke and Graeber (2021)
framework. However, even though perceived expertise might also partly capture cognitive
problems in the certainty equivalent formation process, the treatment effects observed in Ex-
periment II suggest that both concepts are complements rather than substitutes to explain risky
choice. We did not vary the decision situation that participants faced in terms of cognitive
uncertainty. Enke and Graeber (2021) manipulate cognitive uncertainty by switching from simple
lotteries to either compound or even ambiguous lotteries. Both types of lotteries substantially
increase the cognitive demands to construct probabilities and make choices. In our setting, we
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did not alter the level of cognitive uncertainty across treatment and control groups. Instead, we
informed treated subjects about the irrelevance of perceived expertise in the decision‐making
process while keeping the explicitly provided outcomes and probabilities constant. Still, experts in
the treatment group display more pronounced inverse‐S‐shaped probability weighting than ex-
perts in the control group. Moreover, the fact that laymen in the treatment group engage slightly
less in probability weighting than laymen in the control group even rules out an unintended
increase in cognitive uncertainty due to the treatment. If the latter were the case, a symmetric
treatment effect (increase in inverse‐S‐shaped probability weighting for both experts and laymen)
would have emerged. These results suggest that ignorance illusion affects behavior beyond
cognitive limitations in decisions under risk.

Furthermore, we find that ignorance illusion prevails in both the gain and loss domain and
that it emerges regardless of whether estimated or assumed value function parameters are em-
ployed. In addition, informing decision makers about the irrelevance of perceived expertise in
decisions under risk eliminates expertise‐dependent differences in probability weighting. How-
ever, it does not help perceived laymen to process probabilities in a more linear, that is, rational
fashion, but instead causes perceived experts to distort probabilities more strongly. Hence, future
research should explore how to exploit perceived expertise as a counter‐bias mechanism to
achieve more rational processing of objective probabilities in decisions under risk.
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