
Vol.:(0123456789)

European Actuarial Journal (2021) 11:441–462
https://doi.org/10.1007/s13385-021-00277-y

1 3

ORIGINAL RESEARCH PAPER

On the calculation of prospective and retrospective 
reserves in non‑Markov models

Marcus C. Christiansen1 

Received: 26 February 2021 / Accepted: 16 April 2021 / Published online: 4 May 2021 
© The Author(s) 2021

Abstract
Almost all life and health insurance models in the actuarial literature use either a 
Markov assumption or a semi-Markov assumption. This paper shows that non-
Markov modelling is also feasible and presents suitable numerical and statistical 
tools for the calculation of prospective and retrospective reserves. A central idea is 
to base the calculation of reserves on forward and backward transition rates. Feasi-
ble estimators for the forward transition rates have been recently suggested in the 
medical statistics literature. This paper slightly extends them according to insur-
ance needs and newly introduces symmetric estimators for backward transition rates. 
Only few adjustments are actually needed in the classical insurance formulas when 
switching from Markov modelling to as-if-Markov evaluations in order to avoid 
model risk.

Keywords  Life and health insurance · Semi-Markov model · Kolmogorov forward 
equation · Landmark Aalen–Nelson estimator · Landmark Aalen–Johansen 
estimator

1  Introduction

Markov and semi-Markov modelling is the predominant approach in life and health 
insurance, even though there are numerous examples where the Markov assumptions 
are actually not satisfied. A central reason for that is a lack of feasible alternatives. 
However, forcing a Markov assumption on non-Markov data produces systematic 
model risk. The size of this systematic risk is hard to quantify and mostly unknown. 
Non-Markov modelling poses numerical and statistical challenges. Concerning the 
numerical issues, we show that non-Markov modelling is actually not harder than 
Markov modelling if actuarial reserves are calculated based on suitable forward 
and backward transition rates. Furthermore, we show that the statistical estimation 
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of forward transition rates is indeed feasible by means of the so-called landmark 
Nelson–Aalen estimator, which was recently suggested in the medical statistics lit-
erature. We additionally develop a symmetric estimator for the backward transition 
rates, which are needed for the calculation of retrospective reserves. Furthermore, 
we slightly expand the information model according to the needs in insurance.

Parallel to Markov modelling we establish as-if-Markov modelling, which eval-
uates insurance liabilities conditional on the current Markov information only but 
without actually making the Markov assumption. We show that few adjustments to 
the classical Markov formulas are sufficient in order that prospective and retrospec-
tive reserves are consistently estimated even on non-Markov data.

Our approach for the numerical calculation of prospective reserves bases on a 
system of two forward differential equations. The first forward equation is for the 
forward state occupation probabilities and expands the Kolmogorov forward equa-
tion to non-Markov cases. The second forward equation is derived from an explicit 
expected cash flow representation of individual insurance contracts. For the numeri-
cal calculation of retrospective reserves, we develop backward equations as time-
reversed forward equations. These backward equations are distinctly different from 
the Kolmogorov backward equation and should not be confused with it. Our time-
reversion concept, which seems to be completely new in the actuarial literature, 
allows us to represent and calculate retrospective reserves fully symmetrically to 
prospective reserves.

A key step in this paper is the statistical estimation of forward and backward 
transition rates from observed data. The estimation of transition rates for Markov 
multistate models has a long tradition in the statistics literature. For nonparametric 
estimations, the Nelson–Aalen estimator is the preferred choice, since it can han-
dle left-truncations and right-censoring. Recently, Putter and Spitoni [12] intro-
duced a so-called landmark Nelson–Aalen estimator that extends the concept of the 
Nelson–Aalen estimator to right-censored non-Markov data. This landmark Nel-
son–Aalen estimator estimates a specific class of forward transition rates. The con-
sistency proof of Putter and Spitoni [12] turned out to be incomplete, but the gap 
was recently closed by Overgaard [11] and Niessl et al. [8]. We rely on the results 
of Overgaard [10, 11] and expand the conditioning current information in the for-
ward transition rates according to insurance needs. Moreover, we newly introduce 
a time-reversed landmark Nelson–Aalen estimator that estimates backward transi-
tion rates. We do not claim to comprehensively solve all statistical challenges. Our 
estimators primarily serve as a proof of concept, but we cover already various useful 
examples. We recommend to consult in addition the statistical literature on land-
mark estimation.

Insurance cash flows may contain both, sojourn payments for staying in a certain 
state and transition payments upon state changes. In case that there are no transition 
payments in an insurance contract, transition rates are not necessarily needed and it 
suffices to work with state occupation probabilities only. A popular nonparametric 
estimator for state occupation probabilities in Markov models is the Aalen–Johansen 
estimator, which is defined as the solution of the Kolmogorov forward equation 
with respect to the Nelson–Aalen estimator. Datta and Satten [4] observed that even 
for non-Markov, randomly right-censored data the Aalen–Johansen estimator still 
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provides consistent estimates. This fact was already used in Guibert and Planchet [7] 
for the calculation of prospective reserves in long-term care insurance with sojourn 
payments only and no transition payments.

In certain cases, our forward rates and forward equations correspond to forward 
concepts in Norberg [9], Buchardt [1] and Buchardt et al.  [2], but aims and scope 
are different. The original notion of forward transition rates was to model market 
prices of biometric risk, whereas we focus on the real-world probability distribu-
tion. Norberg [9] and Buchardt [1] assume certain Markov structures, which we try 
to completely avoid. Buchardt et al. [2] define artificial forward rates that are meant 
for efficient numerical computations of prospective reserves. Their aim is to use the 
classical formulas also for non-Markov data, whereas we suggest to adjust the clas-
sical formulas.

The paper is structured as follows. In Sect.  2 we define the random pattern of 
states of an individual life or health insurance policy as a stochastic jump process. 
Section 3 discusses the information that an insurer is actually conditioning on in the 
calculation of prospective and retrospective reserves. Section 4 clarifies the formal 
definition of the stochastic differential equation notation in this paper. In Sect. 5 the 
insurance cash flow is mathematically defined. Section 6 presents a general exten-
sion of the Kolmogorov forward equation to non-Markov frameworks. The statisti-
cal estimation of forward and backward transition rates from data is discussed in 
Sect. 7. Section 8 explains the calculation of prospective and retrospective reserves 
based on the estimators from the Sect. 7. Section 9 concludes. An Appendix con-
tains the proofs of all presented theorems.

2 � The random pattern of states of the insured

At each point in time the insurer assigns a state to each individual insured that 
describes the current health status and contract status. We describe the random pat-
tern of states of the insured by a right-continuous jump process Z = (Z(t))t≥0 on a 
finite state space Z . Let (Ω,A,ℙ) be the underlying probability space. We addition-
ally set Z0− ∶= Z0 . We define state indicator processes Ii and transition counting pro-
cesses Nij by

which are processes with right-continuous paths. We assume that

This condition implies in particular that the number of jumps of Z is almost surely 
finite on finite intervals. We can represent Ii as

Ii(t) ∶= �{Z(t)=i}, i ∈ Z,

Nij(t) ∶= #{s ∈ (0, t] ∶ Z(s−) = i, Z(s) = j}, i, j ∈ Z, i ≠ j,

(1)�
[
(Nij(t))

2
]
< ∞, t ≥ 0, i, j ∈ Z, i ≠ j.

(2)Ii(t) = Ii(0) +
∑

j∶j≠i
(
Nji(t) − Nij(t)

)
, t ≥ 0, i ∈ Z.



444	 M. C. Christiansen 

1 3

3 � The information model

We generally assume that we are currently at time s ≥ 0 . This parameter s is fixed 
in this paper, so we largely hide it in our notation. The available information on 
the state process of the insured at time s is given by the sigma-algebra

Additionally, let Hs ⊆ A be another sigma-algebra that describes external informa-
tion, e.g. portfolio information, demographic trends, and so on. While Fs ∨Hs rep-
resents the maximally available information at current time s, the insurer potentially 
uses only a subset of this information, here described by a sub-sigma-algebra

There are various reasons for reducing the information Fs ∨Hs , including the fol-
lowing motives:

•	 reducing the numerical complexity of actuarial calculations,
•	 a lack of data for estimating ℙ|Fs∨Hs

,
•	 anti-discrimination laws and data privacy regulations.

Let us focus for the moment on information reductions of the individual infor-
mation Fs only. Any choice of Gs between Hs and and Hs ∨ Fs can be reason-
able. In the calculation of technical reserves for the insurer’s balance sheet, it 
largely suffices to study portfolio averages only, so it can be appropriate to cut 
Gs down to Hs . On the other hand, for the calculation of solvency reserves where 
the insurer aims to get a complete picture of the risk situation, it is rather prefer-
able to use the maximally available information Hs ∨ Fs . A frequently used inter-
mediate case is Gs = Hs ∨ �(Z(s)) since this corresponds to a Markov assumption 
for Z. Yet, in many insurance applications Z is actually not Markov, and then 
Gs = Hs ∨ �(Z(s)) constitutes an as-if-Markov approach. The latter approach often 
results from a lack of data for the statistical estimation of the full distribution of 
Z. Anti-discrimination laws restrict for example the use of the sex of the insured 
as a risk factor in premiums and surrender values. By deleting the information 
on the sex of the insured from Gs , we obtain gender-neutral values. On the other 
hand, anti-discrimination laws can imply significant lapse risk, so the sex of the 
insured should be accounted for in solvency calculations.

4 � Differential notation

Suppose that X is a right-continuous and non-decreasing real process. Let H be a 
jointly measurable process. Then we define a stochastic integral

Fs = �(Z(u) ∶ u ≤ s).

Gs ⊆ Fs ∨Hs.
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on intervals I ⊆ ℝ by pathwise Lebesgue–Stieltjes integration. By using the additive 
relation dX(t) = dX+(t) − dX−(t) , we expand the domain of the stochastic integral 
to processes of the form X = X+ − X− , where X+ and X− are non-decreasing, non-
negative, right-continuous real processes that are chosen minimally. Suppose that

almost surely for some interval I. Then we write this fact briefly as

and call (5) a stochastic differential equation. If the paths of X are differentiable with 
derivative x, then (5) is equivalent to the pathwise ordinary differential equation

If X is a jump process with jumps at integer times n only, then (5) means that

5 � The insurance cash flow

Suppose that Bb and Bp are stochastic processes that describe at each time t ≥ 0 the 
accumulated benefits and accumulated premiums of an individual insurance policy 
on the interval [0, t]. The right-continuous process

is the total insurance cash flow. Note that B(0−) is zero, but B(0) can be different 
zero, describing a lump sum payment at time 0. Time t can either represent the con-
tract time or the age of the insured, whichever is more convenient. If parameter t 
represents the contract time, then the insured has a positive starting age x at time 
zero, but we are not showing parameter x in our notation.

Definition 5.1  We say that B has a deterministic canonical cash flow representation 
if there exist non-decreasing, non-negative and right-continuous real functions (B+

i
)i , 

( B−
i
)i and measurable and bounded real functions (bij)ij∶i≠j that almost surely satisfy

for Bi ∶= B+
i
− B−

i
 . We say that a canonical cash flow representation has a finite 

horizon if there exists a time T < ∞ such that

(3)∫I

H(u) dX(u)

(4)Y(t) − Y(s) = ∫(s,t]

H(u) dX(u), ∀ (s, t] ⊆ I,

(5)dY(t) = H(t) dX(t), t ∈ I,

(6)
d

dt
Y(t) = H(t) x(t), t ∈ I.

(7)Y(n) − Y(n − 1) = H(n) (X(n) − X(n − 1)), (n − 1, n] ⊆ I.

(8)B = Bb − Bp

(9)dB(t) =
∑

i

Ii(t−) dBi(t) +
∑

i,j∶i≠j
bij(t) dNij(t), t ≥ 0,
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We interpret B+
i
(t) and B−

i
(t) as accumulated sojourn benefits and accumulated 

premiums on [0, t] in state i. The function bij(t) describes the transition payment for 
a jump from i to j at time t.

There are only few insurance cash flows in insurance practice that can not be 
represented as deterministic canonical cash flows, provided that we allow Z to be 
non-Markov. Markov models struggle with duration dependencies in the insurance 
benefits such as deferment periods. For the modelling of a deferment period, it is 
actually not necessary to model the full duration process, but it suffices to introduce 
sub-states, say i0 and i1 , that indicate whether the deferment period has been com-
pleted yet. The insured jumps into sub-state i0 first and then moves at completion 
of the deferment period to i1 with probability 1. As such a splitting of states implies 
duration effects, we cannot continue to assume that the state process Z is Markov. 
Yet, if we generally drop the Markov assumption, then we are free to use the split-
ting method at discretion.

Let � be a strictly positive and measurable real function that describes the value 
of the insurers investment portfolio at time t. Looking from the perspective of the 
current time s, the discounted accumulated future payments Y+ and the discounted 
accumulated past and present payments Y− of the insurance contract are given by

6 � State occupation probabilities and transition rates

Definition 6.1  The almost surely unique right-continuous processes (Pi(t))t≥0 that 
satisfy

are called the state occupation processes with respect to information Gs.

An explicit right-continuous definition of Pi can be obtained by calculating the 
above conditional expectations for each time t on the basis of a fixed regular con-
ditional probability ℙ( ⋅ |Gs) , since then the right-continuity of Pi is a result of the 
right-continuity of Ii and the dominated convergence theorem. Right-continuous 
processes are generally almost surely unique.

Let (Pij)ij be the almost surely unique right-continuous processes that satisfy

dB+
i
(t) = 0, dB−

i
(t) = 0, bij(t) = 0, t > T , i, j ∈ Z, i ≠ j.

(10)
Y+ = ∫(s,∞)

�(s)

�(t)
dB(t),

Y− = ∫[0,s]

�(s)

�(t)
dB(t).

Pi(t) = �[Ii(t)|Gs], t ≥ 0,

Pij(t) = �[Nij(t)|Gs], t ≥ 0.
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Definition 6.2  Let (Λij)ij∶i≠j be the right-continuous processes defined by Λij(s) = 0 
and

We denote dΛij(t) , t > s , as forward transition rate and dΛij(t) , t < s , as backward 
transition rate for a jump from i to j.

The real-valued stochastic processes (Λij)ij∶i≠j are well-defined on [0, T] if the 
integrability condition

holds on Ω for each i, j ∈ Z with i ≠ j . In the remaining paper we generally assume 
that (12) is indeed satisfied. Note that one can drop  Assumption (12) by redefin-
ing (Λij)ij∶i≠j as random measures on the real line, but for the sake of simplicity this 
paper prefers to see (Λij)ij∶i≠j as real-valued stochastic processes.

For each i ∈ Z we set

Theorem  6.3  The processes (Pi)i and (Λij)ij∶i≠j almost surely satisfy the stochastic 
differential equations

For the proof see Appendix.

Example 6.4  (Discrete-time Markov model) Suppose that Z is a Markov process that 
jumps only at integer times n. Let Gs = �(Z(s)) and s ∈ ℕ0 . Then Λij , i ≠ j , are pure 
jump processes with jumps at integer times of size

(11)

dΛij(t) =
�{Pi(t−)>0}

Pi(t−)
dPij(t), t > s,

dΛij(t) =
�{Pj(t)>0}

Pj(t)
dPij(t), t ≤ s.

(12)∫(0,s]

�{Pj(t)>0}

Pj(t)
dPij(t) + ∫(s,T]

�{Pi(t−)>0}

Pi(t−)
dPij(t) < ∞

(13)

Λii(t) ∶= −
∑

j∶j≠i
Λij(t), t > s,

Λii(t) ∶= −
∑

j∶j≠i
Λji(t), t ≤ s.

(14)dPi(t) =
∑

j

Pj(t−) dΛji(t), t > s,

(15)dPi(t) = −
∑

j

Pj(t) dΛij(t), t ≤ s.



448	 M. C. Christiansen 

1 3

By using the fact that

for 
n−s

pki
s
 defined as

Equation (14) is equivalent to the deterministic recursion equations

The latter formula is known as the Chapman–Kolmogorov equation. Analogously, 
Eq. (15) corresponds to

Example 6.5  (Discrete-time as-if-Markov model) We start with the same setting as 
in Example 6.4 but drop the assumption that Z is Markov. Then Eq. (14) is equiva-
lent to

for 
1
pk,ji
n

 defined as

Different from the Chapman–Kolmogorov equation in Example 6.4, the annual 
transition probability 

1
pk,ji
n

 really needs the extra parameter k here. Equation (14) is 
equivalent to

for 
−1
pk,ji
n

 defined as

Example 6.6  (Continuous-time Markov model) Suppose that Z is a Markov process. 
Let Gs = �(Z(s)) , and assume that Λij is continuously differentiable with derivative 
�ij . Then one can show that

ΔΛij(n + 1) = ℙ(Z(n + 1) = j|Z(n) = i) =∶
1
pij
n
, n ≥ s,

ΔΛij(n − 1) = ℙ(Z(n − 1) = i|Z(n) = j) =∶
−1
pij
n
, n ≤ s.

(16)Pi(n) =
∑

k

Ik(s) n−sp
ki
s
, n ≥ 0,

n−s
pki
s
∶= ℙ(Z(n) = i|Z(s) = k), n ≥ 0,

n+1−s
pki
s
=
∑

j
n−s

pkj
s 1

pji
n
, n ≥ s, k ∈ Z.

n−1−s
pki
s
=
∑

j
n−s

pkj
s −1

pij
n
, n ≤ s, k ∈ Z.

n+1−s
pki
s
=
∑

j
n−s

pkj
s 1

pk,ji
n
, n ≥ s,

(17)1
pk,ji
n

∶= ℙ(Z(n + 1) = i|Z(n) = j, Z(s) = k).

n−1−s
pki
s
=
∑

j
n−s

pkj
s −1

pk,ij
n
, n ≤ s,

(18)−1
pk,ji
n

∶= ℙ(Z(n − 1) = i|Z(n) = j, Z(s) = k).
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for i ≠ j , where the mappings

are known as transition probabilities. Because of

Equation (14) is equivalent to the ordinary differential equations

The latter equation is known as the Kolmogorov forward equation. Analogously, Eq. 
(14) corresponds to the ordinary differential equations

The latter equation is not (!) the Kolmogorov backward equation.

Example 6.7  (Continuous-time as-if-Markov model) We start with the same set-
ting as in Example 6.6 but drop the assumption that Z is Markov. Equation (19) still 
holds here, but Eq. (14) takes the form

where �k,ij(t) dt = dΛk,ij(t) is defined as in Definition 6.2 but with Pi and Pij replaced 
by

Different from the Markov case, the transition rate �k,ji needs the extra parameter k 
here. However, for the special case of decrement models Buchardt et al. [2] show 
the existence of artificial transition rates that are constant in k and still satisfy (20). 
Equation (14) takes here the form

Example 6.8  (Continuous-time doubly-stochastic Markov model) We start with 
the same setting as in Example 6.7 but expand the current information at time s 
to Gs = �(Z(s),X(s)) , where X is a process that generates the external informa-
tion H . We assume that Z is conditionally Markov given X. This setup is known as 

𝜆ij(t) =
d

dh

||||h=0
pij(t, t + h), t > s,

pij(s, t) ∶= ℙ(Z(t) = j|Z(s) = i)

(19)Pi(t) =
∑

k

Ik(s) pki(s, t), s, t ≥ 0,

(20)
d

dt
pki(s, t) =

∑

j

pkj(s, t) 𝜆ji(t), t > s, k ∈ Z.

(21)
d

dt
pki(s, t) = −

∑

j

pkj(s, t) �ij(t), t ≤ s, k ∈ Z.

(22)
d

dt
pki(s, t) =

∑

j

pkj(s, t) 𝜆k,ji(t), t > s, k ∈ Z,

Pk,i(t) = �[Ii(t)|Z(s) = k], Pk,ij(t) = �[Nij(t)|Z(s) = k].

(23)
d

dt
pki(s, t) = −

∑

j

pkj(s, t) �k,ij(t), t ≤ s, k ∈ Z.
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doubly-stochastic Markov model and is assumed in Norberg [9] and Buchardt [1]. 
Equation (14) has then the form

where �(k,x),ij(t) is defined as in Definition 6.2 but with Pi and Pij replaced by

Equation (24) is equal to equation (4.1) in Buchardt [1], and our forward transition 
rates �(k,x),ij(t) are mathematically equivalent to formula (39) in Norberg [9] and 
Definition 4.1 in Buchardt [1]. Our definition of forward transition rates is math-
ematically more rigorous and can help to clarify the definitions of Norberg [9] and 
Buchardt [1]. Theorem 6.3 shows that for Eq. (24) to hold it is actually not necessary 
to assume a doubly-stochastic Markov structure.

7 � Statistical estimation of transition rates

This section demonstrates how to estimate the transition rates (dΛij)ij∶i≠j from empir-
ical data. The results presented here serve as a proof of concept and do not cover 
the full range of possible model settings. We recommend to additionally consult the 
statistical literature on landmark estimators.

A random variable � that generates the information Gs is denoted as landmark. We 
aim to estimate

where Pz,i and Pz,ij are defined by

Suppose that we observe a sample of n ∈ ℕ individuals

where Lm , Rm , m ∈ {1,… , n} , are random variables that describe left-truncation and 
right-censoring in the data. By Im , Nm

ij
 , �m , m ∈ {1,… , n} , we denote the indicator 

processes, counting processes and landmarks of each observed individual. Let Jm , 
m ∈ {1,… , n} , be Bernoulli random variables that are only then non-zero if �m is 
𝜎(Zm(t) ∶ Lm < t ≤ Cm)-measurable, i.e.  in case of Jm = 1 the landmark �m can be 
indeed observed in the data. Let

(24)
d

dt
P(k,x),i(s, t) =

∑

j

P(k,x),j(s, t) 𝜆(k,x),ij(t), t > s, k ∈ Z,

P(k,x),i(t) = �[Ii(t)|(Z(s),X(s)) = (k, x)], Pk,ij(t) = �[Nij(t)|(Z(s),X(s)) = (k, x)].

Λz,ij(t) = �(s,t]

�Pz,i(u−)>0

Pz,i(u−)
dPz,ij(u), t > s,

Λz,ij(t) = �(t,s]

�Pz,j(u)>0

Pz,j(u)
dPz,ij(u), t ≤ s,

Pz,i(t) = �[Ii(t)|� = z], Pz,ij(t) = �[Nij(t)|� = z].

(Z1(t))L1<t≤R1 ,… , (Zn(t))Ln<t≤Rn ,
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be the counting processes of the sub-sample that selects individuals whose land-
marks are observable and equal to z, and let

be the corresponding at-risk processes.

Definition 7.1  The landmark Nelson–Aalen estimator for (Λz,ij)ij∶i≠j is defined as

The landmark Nelson–Aalen estimator for t > s was first introduced by Putter and 
Spitoni [12], who consider the landmark � = Z(s) only.

Definition 7.2  The landmark Aalen–Johansen estimator for (Pz,i)i is defined as the 
solution of the differential equation systems

with initial/terminal values

The following theorem offers sufficient conditions for the consistency of the land-
mark Nelson–Aalen estimator. Our focus is on models with internal information 
only. We use the proof of Overgaard [11]. Compared to the existing literature, we 
allow for a larger class of landmarks, and we add the time-reversed perspective.

Theorem 7.3  Let T < ∞ . Suppose that

(a)	 (Z1, �1, L1,R1, J1),… , (Zn, �n, Ln,Rn, Jn) are independent and identically distrib-
uted,

(b)	 R1 , L1 are stochastically independent of (Z1(t))t≥0 , �1,

N̂z,ij(t) =

n∑

m=1

�{Jm=1}�{𝜁m=z}

(
Nm
ij
(t ∧ Rm) − Nm

ij
(t ∧ Lm)

)
, t ≥ 0,

Îz,i(t) =

n∑

m=1

�{Jm=1}�{𝜁m=z}�{Lm<t≤Rm} I
m
i
(t), t ≥ 0,

Λ̂z,ij(t) = �(s,t]

�Îz,i(u−)>0

Îz,i(u−)
dN̂z,ij(u), t > s,

Λ̂z,ij(t) = �(t,s]

�Îz,j(u)>0

Îz,j(u)
dN̂z,ij(u), t ≤ s.

(25)

dP̂z,i(t) =
∑

j

P̂z,j(t−) dΛ̂z,ji(t), t > s,

dP̂z,i(t) = −
∑

j

P̂z,j(t) dΛ̂z,ij(t), t ≤ s,

P̂z,i(s) =
Îz,i(s)

∑
i Îz,i(s)

.
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(c)	 �1 is �(Z1(u) ∶ u ∈ I)-measurable for some interval I ⊆ [0, s] and J1 = �{I⊆(L1,R1]},

(d)	 ℙ(J1 = 1, L1 < t ≤ R1) ≥ 𝜀 > 0 for all t ∈ (0, T].

Then for each i, j ∈ Z , i ≠ j , and each z with ℙ(𝜁 = z) > 0 we have

The proof is given in Appendix. The next theorem shows consistency also for 
the landmark Aalen–Johansen estimator.

Theorem 7.4  Suppose that the assumptions of Theorem 7.3 are satisfied. Then for 
each i, j ∈ Z , i ≠ j , and each z with ℙ(𝜁 = z) > 0 we have

The proof is given in Appendix.

Example 7.5  (Discrete-time Markov model) The classical Nelson–Aalen estimator 
for 

1
pk,ji
n

 is

Plugging these estimators into the recursion equations in Example 6.4 (Chapman–
Kolmogorov equation) and solving the latter with the initial value (26) yields the 
classical Aalen–Johansen estimator.

Example 7.6  (Discrete-time as-if-Markov model) We start from the setting of Exam-
ple 7.5 but drop the assumption that Z is Markov. Let � ∶= Z(s) . Then the landmark 
Nelson–Aalen estimator for 

1
pk,ji
n

 in (17) is

and the landmark Nelson–Aalen estimator for 
−1
pk,ji
n

 in (18) is

If we plug these estimators into the recursion equations in Example (6.5) and solve 
them with the initial/terminal values

�

[
sup

t∈[0,T]

||Λ̂z,ij(t) − Λz,ij(t)
||
]
→ 0, n → ∞.

�

[
sup

t∈[0,T]

||P̂z,i(t) − Pz,i(t)
||
]
→ 0, n → ∞.

∑
m �{Lm<n, n+1≤Rm}I

m
j
(n) Im

i
(n + 1)

∑
m �{Lm<n, n+1≤Rm}I

m
j
(n)

.

∑
m �{Lm<s, n+1≤Rm}I

m
k
(s) Im

j
(n) Im

i
(n + 1)

∑
m �{Lm<s, n+1≤Rm}I

m
k
(s) Im

j
(n)

,

∑
m �{Lm<n−1, s≤Rm}I

m
k
(s) Im

j
(n) Im

i
(n − 1)

∑
m �{Lm<n−1, s≤Rm}I

m
k
(s) Im

j
(n)

.
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then the solution is just the landmark Aalen–Johansen estimator P̂z,i , which con-
verges here to the transition probability ℙ(Z(t) = i|Z(s) = z) . The landmarking 
ensures that we always estimate the transition probabilities consistently even if the 
data is non-Markov. In return, we increase the variance of the estimators since the 
landmarking uses sub-samples only.

Example 7.7  (Select mortality tables) Consider a discrete-time insurance model and 
let � represent the number of years that the insured already spent in the current state. 
Then the annual transition rates (

1
pz,ij
s
)z,ij are known as select tables at age s. The 

corresponding landmark Nelson–Aalen estimator

equals the common raw estimate for 
1
pz,ji
s

.

Example 7.8  (Continuous-time as-if-Markov model) The landmark Nelson–Aalen 
estimator Λ̂z,ij is a jump process, so a derivative 𝜆̂z,ij does not exist. This fact is com-
pletely analogous to the Markov case with the classical Nelson–Aalen estimator. 
Densities 𝜆̂z,ij can be obtained with the help of additional smoothing techniques. 
Without such smoothing steps our estimated model is in fact a discrete-time model 
(on an irregular time grid).

Remark 7.9  (Semi-Markov model) Let U = (U(t))t≥0 be the duration process of Z, 
which is defined as

The state process Z is called a semi-Markov process if the bivariate process (Z, U) is 
Markov. In this case, � = (Z(s),U(s)) is a natural choice for the landmark. Yet, U(s) 
is usually not a discrete random variable, so we struggle with the fact that � takes 
values from an uncountably infinite set. A possible way out is to approximate � by a 
discrete random variable, e.g. replace U(s) in � by the rounded duration ⌊hU(s)⌋∕h 
for a suitably small h > 0.

8 � Prospective and retrospective reserves

The discounted accumulated future payments Y+ and the discounted accumulated 
past and present payments Y− of the insurance contract, cf.  (10), are in general not 
adapted to the current information Gs . This motivates the following definition

(26)

∑
m �{Lm<s≤R}Imj (s)∑

i

∑
m �{Lm<s≤R} Imi (n)

, j ∈ Z,

∑
m �{Lm<s, s+1≤Rm}�{𝜁=z} I

mji(s) Im
i
(s + 1)

∑
m �{Lm<s, s+1≤Rm}�{𝜁=z} I

m
j
(s)

U(t) ∶= inf
{
u ≤ t ∶ Z(t) = Z(r) ∀ r ∈ [u, t]

}
.
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Definition 8.1  The prospective reserve and retrospective reserve at time s are 
defined as

Either the prospective reserve or the retrospective reserve is commonly cred-
ited to the policyholder. The reserves typically serve as surrender values upon 
lapse of the policy, and they are used for identifying surplus and losses. There-
fore, the choice of the sub-sigma-algebra Gs affects the risk transfer between the 
individual insured, the insurance portfolio and the insurer. If we choose Gs = Hs , 
then V+ and V− describe mean portfolio reserves since all individual risk is 
averaged out. If we set Gs = Hs ∨ Fs , then V+ and V− describe fully individual 
reserves, in particular we have V− = Y− . If we define Gs = Hs ∨ �(Z(s)) , then V+ 
and V− describe partially averaged reserves, but in case that Z is Markov the pro-
spective reserve is still fully individual.

Theorem 8.2  Suppose that the insurance cash flow B has a deterministic canonical 
representation of the form (9) with finite horizon T < ∞ . Then

almost surely.

The proof is given in Appendix. Let

Theorem 8.3  Suppose that the assumptions of Theorem7.3 are satisfied. Let V̂+
z

 and 
V̂−
z

 be the solutions of Eqs. (28) and (29) but with Pi and Λij replaced by their land-
mark Nelson–Aalen and landmark Aalen–Johansen estimators. Then for each i ∈ Z 
and z with ℙ(𝜁 = z) > 0 we have

The proof is given in Appendix.
By combining Theorems  6.3 and (8.2), we can construct numerical schemes 

for the calculation of V+ and V− . By solving the stochastic differential equations

(27)
V+ = �[Y+|Gs],

V− = �[Y−|Gs].

(28)V+ =
∑

i
�(s,T]

�(s)

�(t)
Pi(t−) dBi(t) +

∑

i,j∶i≠j�(s,T]

�(s)

�(t)
bij(t)Pi(t−) dΛij(t),

(29)V− =
∑

i
�[0,s]

�(s)

�(t)
Pi(t−) dBi(t) +

∑

i,j∶i≠j�[0,s]

�(s)

�(t)
bij(t)Pj(t) dΛij(t),

V+
z
∶= �[Y+|� = z], V−

z
∶= �[Y−|� = z].

�
[||V̂+

z
− V+

z
||
]
→ 0, �

[||V̂−
z
− V−

z
||
]
→ 0, n → ∞.
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pathwise on (s, T] with initial values of W+(s) = 0 and Pi(s) = �[Ii(s)|Gs] , i ∈ Z , we 
obtain the prospective reserve as

Similarly, by solving the stochastic differential equations

pathwise on [0, s] with terminal values of W−(s) = 0 and Pi(s) = �[Ii(s)|Gs] , i ∈ Z , 
we obtain the retrospective reserve as

Example 8.4  (Discrete-time as-if-Markov model) Suppose that we are in the setting 
of Example 6.5. Let T ∈ ℕ and �(s)∕�(t) = vt−s , i.e. we have a constant annual dis-
counting factor of v. Let (Bi)i be step functions with jumps of size bi(n) at integer 
times n. Then (30) is equivalent to the recursion equations

By calculating the recursion for each state k, starting from s going up to time T, we 
obtain the prospective reserve as

Likewise, (31) is equivalent to the backward recursion equations

(30)

dW+(t) =
∑

i

�(s)

�(t)
Pi(t−) dBi(t) +

∑

i,j∶i≠j
�(s)

�(t)
bij(t)Pi(t−) dΛij(t),

dPi(t) =
∑

j

Pj(t−) dΛji(t), i ∈ Z,

V+ = W+(T).

(31)

dW−(t) = −
∑

i

�(s)

�(t)
Pi(t−) dBi(t) −

∑

i,j∶i≠j
�(s)

�(t)
bij(t)Pj(t) dΛij(t),

dPi(t) = −
∑

j

Pj(t) dΛij(t), i ∈ Z,

V− = W−(0) + B(0).

W+
k
(n + 1) = W+

k
(n) +

∑

i

vn+1−s
n−s

pki
s

(
bi(n + 1) +

∑

j∶j≠i
bij(n + 1)

1
pk,ij
n

)
,

n+1−s
pki
s
=
∑

j
n−s

pkj
s 1

pk,ji
n
, n ≥ s,

0
pki
s
= �ki, W+(s) = 0.

V+ = W+
Z(s)

(T).
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By calculating the recursion for each state k, starting from s and going down to time 
0, we obtain the retrospective reserve as

Example 8.5  (Discrete-time Markov model) If we assume in Example 8.4 that Z is 
a Markov process, then the recursion formulas are the same but the parameter k in 
1
pk,ij
n

 and 
−1
pk,ij
n

 can be neglected.

Example 8.6  (Continuous-time as-if-Markov model) Suppose that we are in the set-
ting of Example 6.7. Furthermore, let (Bi)i be continuously differentiable with deriv-
atives (bi)i . Recall the definition of pij(s, t) in Example 6.6. Solving (30) pathwise 
means here that we have to distinguish between the events {Z(s) = k} , k ∈ Z . So we 
have to solve the ordinary differential equation system

on (s, T] for k, i ∈ Z , and then we obtain the prospective reserve as

Solving (31) pathwise means that we need to solve the differential equation system

on [0, s) for each k ∈ Z , and then we obtain the retrospective reserve as

Example 8.7  (Continuous-time Markov model) If we assume in Example  8.6 that 
Z is a Markov process, then the differential equation systems are the same but the 

W−
k
(n − 1) = W−

k
(n) +

∑

i

vn−1−s
n−s

pki
s

(
bi(n − 1) +

∑

j∶j≠i
bji(n − 1)

−1
pk,ji
n

)
,

n−1−s
pki
s
=
∑

j
n−s

pkj
s −1

pk,ij
n
, n ≤ s,

0
pki
s
= �ki, W−(s) = 0.

V− = W−
Z(s)

(0) + B(0).

(32)

d

dt
W+

k
(t) =

∑

i

�(s)

�(t)
pki(s, t)

(
bi(t) +

∑

j∶j≠i
bij(t) �k,ij(t)

)
,

d

dt
pki(s, t) =

∑

j

pkj(s, t) �k,ji(t),

W+
k
(s) = 0, pki(s, s) = �ki

V+ = W+
Z(s)

(T).

(33)

d

dt
W−

k
(t) = −

∑

i

�(s)

�(t)
pki(s, t)

(
bi(t) +

∑

j∶j≠i
bji(t) �k,ji(t)

)
,

d

dt
pki(s, t) = −

∑

j

pkj(s, t) �k,ij(t),

W−
k
(s) = 0, pki(s, s) = �ki

V− = W−
Z(s)

(0).
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parameter k in �k,ij can be neglected. In the special case of decrement models with 
sojourn payments only and no transition payments, Buchardt et al. [2] showed that 
the parameter k may be even dropped if Z is non-Markov, but the transition rates 
have to be chosen in a specific artifical way. .

Example 8.8  (Continuous-time doubly-stochastic Markov model) Suppose that we 
are in the setting of Example 6.8. Let the differentiability assumptions of Exam-
ple 8.6 be satisfied. Then Eq. (30) takes the form

and we obtain the prospective reserve as

Equation (34) is equivalent to equations (5.2) & (4.1) in Buchardt [1]. Note that Eq. 
(34) does not really need the doubly-stochastic Markov structure.

Example 8.9  (Time-continuous semi-Markov model) Let Z be a semi-Markov pro-
cess with corresponding duration process U, cf. Example 7.9. Let Gs = �(Z(s),U(s)) . 
Suppose that (Bi)i and (Λij)ij∶i≠j are continuously differentiable with derivatives (bi)i 
and (�ij)ij∶i≠j . Then we have

for � ∶= (Z(s),U(s)) and suitable deterministic mappings W+
z

 , W−
z

 , �z,ij , Pz,i because 
of the semi-Markov assumption. Solving (30) pathwise means here that we have to 
distinguish between the events {� = z} , z ∈ Z × [0, s] . So we have to solve the ordi-
nary differential equation system

for each z = (z1, z2) ∈ Z × [0, s] × ℕ0 , and then we obtain the prospective reserve as

(34)

d

dt
W+

(k,x)
(t) =

∑

i

�(s)

�(t)
P(k,x),i(s, t)

(
bi(t) +

∑

j∶j≠i
bij(t) �(k,x),ij(t)

)
,

d

dt
P(k,x),i(s, t) =

∑

j

P(k,x),j(s, t) �(k,x),ji(t),

W+
(k,x)

(s) = 0, p(k,x)i(s, s) = �ki,

V+ = W+
(Z(s),X(s))

(T).

W+(t) = W+
�
(t),

W−(t) = W−
�
(t),

�ij(t) = �� ,ij(t),

Pi(t) = P� ,i(t),

d

dt
W+

z
(t) =

∑

i

�(s)

�(t)
Pz,i(t)

(
bi(t) +

∑

j∶j≠i
bij(t) �z,ij(t)

)
,

d

dt
Pi(t, z) =

∑

j

Pz,j(t) �z,ji(t),

W+
z
(s) = 0, Pz,i(s) = �iz1
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Solving (31) pathwise means that we need to solve the ordinary differential equation 
system

for each z = (z1, z2) ∈ Z × [0, s] , and then we obtain the retrospective reserve as

As z is an element from Z × [0, s] , our ordinary differential equation systems involve 
an uncountably infinite number of equations. For numerical solving we need to 
reduce that system, for example by approximating U(s) as described in Remark 7.9.

9 � Conclusion

It is often unclear in insurance practice whether the true state process Z of an indi-
vidual insured is actually a Markov process. We can then choose from the following 
options: 

(a)	 Pretend that Z is Markov and use the classical formulas for the calculation of 
reserves.

(b)	 Replace Markov modelling by as-if-Markov evaluation as explained in this paper.

Option (a) comes with systematic model risk, which does not vanish for large sam-
ple sizes. The approximation error is difficult to quantify. The actuary might not 
even be able to tell whether the reserves have been overestimated or underestimated. 
Option (b) comes with additional unsystematic estimation risk, since the landmark 
estimators use sub-samples only, but the estimation risk vanishes for large samples 
sizes. Moreover, the statistical literature offers various methods for quantifying the 
estimation risk. This makes option (b) the preferable choice.

We demonstrated that the as-if-Markov transition rates that we need for option 
(b) can be well-estimated by the landmark Nelson–Aalen estimator. The statistical 
literature offers further results that wait to be utilized in insurance.

While this paper focusses on snapshots of prospective and retrospec-
tive reserves at fixed time points only, in actuarial risk management it is also 

V+ = W+
�
(T).

d

dt
W−

z
(t) = −

∑

i

�(s)

�(t)
Pz,i(t)

(
bi(t) +

∑

j∶j≠i
bji(t) �z,ji(t)

)
,

d

dt
Pz,i(t) = −

∑

j

Pz,j(t) �z,ij(t),

W−
z
(s) = 0, Pz,i(s) = �iz1

V− = W−
�
(0).



459

1 3

On the calculation of prospective and retrospective reserves…

important to understand the dynamics of the reserves when time is moving. A 
comprehensive non-Markov theory for the dynamic perspective does not exist 
yet, but partial answers can be found in Christiansen and Furrer [3].

Appendix: Proofs

Proof of Theorem 6.3  Let ℙ�(⋅) be a regular version of the conditional distribution 
ℙ( ⋅ | Gs)(�) . Let ��[ ⋅ ] be defined as the Lebesgue integral of the argument with 
respect to ℙ�(⋅) . Since ��[Ii(t−)] = 0 implies that Ii(t−) = 0 ℙ�(⋅) -almost surely, by 
applying the Campbell theorem we obtain

for ℙ-almost all � ∈ Ω . Moreover, because of (2) we almost surely have

By applying (35) and the definitions of Λij and Λii , the latter equation can be equiva-
lently rewritten to

This shows (14). The proof of (15) is analogous. 	�  ◻

Proof of Theorem 7.3  Let ℙz(⋅) ∶= ℙ( ⋅ |� = z) and �z[ ⋅ ] ∶= �[ ⋅ |� = z] . Let Pz

i
 and 

Λz

ij
 be the state occupation probabilities and the transition rates that correspond to 

the censored indicator process

and the censored counting process

(35)

∫(s,t]

�{Pi(u−)(𝜔)>0}
dPij(u)(𝜔) = �𝜔

[

∫(s,t]

�{Pi(u−)(𝜔)>0}
Ii(u−) dNij(u)

]

= �𝜔

[

∫(s,t]

Ii(u−) dNij(u)

]

= ∫(s,t]

dPij(u)(𝜔), t > s,

Pi(t) − Pi(s) =
∑

j∶j≠i
(
Pji(t) − Pji(s)

)
−
∑

j∶j≠i
(
Pij(t) − Pij(s)

)
, t > s.

dPi(t) =
∑

j∶j≠i
�{Pj(t−)>0}

dPji(t) −
∑

j∶j≠i
�{Pi(t−)>0}

dPij(t)

=
∑

j

Pj(t−) dΛji(t), t > s.

Iz
i
(t) = �{𝜁=z,J=1,L<t≤R} Ii(t)

Nz

ij
(t) = �{𝜁=z,J=1}

(
Nij(t ∧ R) − Nij(t ∧ L)

)
= �(0,t]

�{𝜁=z,J=1,L<u≤R}dNij(u).
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By using assumption (b) and the Campbell Theorem, for t ≤ s we can show that

On the other hand, assumption (b) implies that

The latter two equations and assumption (d) yield

for t ≤ s . Similar calculations show that (36) holds also for t > s . For p ∈ [1, 2) , we 
define the p-variation norm as ‖ ⋅ ‖[p] ∶= ‖ ⋅ ‖∞ + ‖ ⋅ ‖Vp

 , where ‖ ⋅ ‖∞ is the supre-
mum norm on [0, T] and ‖ ⋅ ‖Vp

 is the total p-variation on [0, T]. According to Theo-
rem 3 in Overgaard [10], it holds that

for p ∈ (1, 2) , where Pz

ij
(t) ∶= �[Nz

ij
(t)] , t ≥ 0 . Because of Eq. (2), we have

By using assumption (a), the law of large numbers, dominated convergence and 
Theorem 3 from Overgaard [10], we obtain

for p ∈ (1, 2) . The inequalities ‖ ∫
(0,⋅]

g(s)df (s)‖[p] ≤ kp‖f‖[p]‖g‖[p] , see Dudley [5], 
and ‖fg‖[p] ≤ ‖f‖[p]‖g‖[p] imply that

Because of this inequality and (37), (38) and assumption (d), we can conclude that

Pz

ij
(t) − Pz

ij
(s) = 𝔼[Nz

ij
(t) − Nz

ij
(s)]

= 𝔼

[
− 𝟙{𝜁=z} �(t,s]

𝔼[𝟙{J=1,L<u≤R}|(Zt)t≥0, 𝜁] dNij(u)

]

= −ℙ(𝜁 = z)𝔼z

[

�(t,s]

𝔼[𝟙{J=1,L<u≤R}] dNij(u)

]

= −ℙ(𝜁 = z)�(t,s]

𝔼[𝟙{J=1,L<u≤R}] dPz,ij(u).

Pz

i
(t−) = 𝔼[Iz

i
(t−)] = ℙ(𝜁 = z)𝔼z[Ii(t−)]𝔼[𝟙{J=1,L<t≤R}].

(36)Λz,ij(t) = Λz

ij
(t)

(37)�

�
‖n−1N̂z,ij − Pz

ij
‖[p]

�
→ 0, n → ∞,

|n−1Îz,i(t) − Pz

i
(t)|

≤ |n−1Îz,i(s) − Pz

i
(s)| +

∑

i,j∶i≠j
|n−1N̂z,ij(t) − Pz

ij
(t)| +

∑

i,j∶i≠j
|n−1N̂z,ij(s) − Pz

ij
(s)|.

(38)�

�
‖n−1Îz,i − Pz

i
‖[p]

�
→ 0, n → ∞,

(39)

�����(0,⋅]

(g(s))−1df (s) − �(0,⋅]

(g�(s))−1df �(s)
����[p]

≤ ‖g − g�‖[p]
‖gg�‖[p]

‖f‖[p] + ‖g�‖[p]‖f − f �‖[p].

(40)�

�
‖Λ̂z,ij − Λz

ij
‖[p]

�
→ 0, n → ∞,
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for p ∈ (1, 2) . Finally, in the latter formula we replace Λz

ij
 by Λz,ij , see (36). 	�  ◻

Proof of Theorem  7.4  Let P̂z(t) = (Pz,i(t))i be a row vector and Λ̂z(t) = (Λ̂z,ij)ij a 
matrix, where the diagonal entries Λ̂z,ii of the matrix are defined as in (13). The solu-
tion P̂z(t) of (25) equals the product integrals

see Gill and Johansen [6]. Product integration is a continuous functional with respect 
to the supremum norm for sequences with uniformly bounded total 1-variation, see 
Gill and Johansen [6]. Therefore the assertion follows from Theorem 7.3 and Theo-
rem  3 in Overgaard [10], which says that the expectation in (37) and, hence, the 
expectation in (40) are uniformly bounded for p = 1 . 	� ◻

Proof of Theorem 8.2  Note that the random variables Y+ and Y− have finite expecta-
tion since the boundedness of (B+

i
)i , (B−

i
)i and (bij)ij∶i≠j on [0, T] implies

for a constant C < ∞ , and since (1) implies that 
∑

i,j∶i≠j Nij(T) has finite expectation. 
By applying the conditional expectation �[ ⋅ |Gs] on the sojourn payment parts of 
Y+ and Y− and pulling the conditional expectations inside the integrals, we directly 
obtain the sojourn payment parts of V+ and V− in (28) and (29). By applying the 
conditional expectation �[ ⋅ |Gs] on the transition payment parts of Y+ and Y− and 
using the Campbell Theorem, we end up with the transition payment parts of V+ and 
V− according to formulas (28) and (29). 	�  ◻

Proof of Theorem  8.3  The formulas (28) and (29) are of the form ∫
(0,⋅]

g(s)df (s) . 
Analogouly to (39) we can show that

Because of this inequality and (37), (38) and assumption (d), we can conclude that

	�  ◻
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P̂z(t) = P̂z(s)
∏

(s,t]

(
� + dΛ̂z,ji

)
, t > s,

P̂z(t)
⊤ =

∏

(t,s]

(
� + dΛ̂z,ji

)
P̂z(t)

⊤, t ≤ s,

max{Y+, Y−} ≤ ∑

i

(B+
i
(T) + B−

i
(T)) sup

0≤s≤T
�(t)

�(s)
≤ C

(
2 +

∑

i,j∶i≠j
Nij(T)

)

�����(0,⋅]

g(s)df (s) − �(0,⋅]

g�(s)df �(s)
����[p]

≤ ‖g − g�‖[p]‖f‖[p] + ‖g�‖[p]‖f − f �‖[p].

�

�
‖V̂z − Vz‖[p]

�
→ 0, n → ∞.
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