
Inteligencia Artificial, 25(70) (2022), 50-63
doi: 10.4114/intartif.vol25iss70pp50-63

INTELIGENCIA ARTIFICIAL

http://journal.iberamia.org/

Fast segmentation of point clouds using a

convolutional neural network for helping visually

impaired people find the closest traversable region

Paúl Tinizaray[1], José Fransisco Lucio Naranjo[1,A], Wilbert G. Aguilar[2,B,∗]

[1]Escuela Politécnica Nacional, Quito-Ecuador
[2]Universidad de las Fuerzas Armadas ESPE, Sangolqúı-Ecuador
[A]jose.lucio@epn.edu.ec [B]wgaguilar@espe.edu.ec

* Corresponding author

Abstract This document presents an approach to help visually impaired people find the closest-to-user traversable

region in a point cloud. Our work aims to reduce the processing time of this task. The proposed approach uses a

convolutional neural network to segment floor regions in the point cloud and criteria to determine which of these

regions are traversable based on their size and position. We design the convolutional neural network to classify

patches, allowing the floor to be searched at selected locations in the point cloud. We find that by searching only

in the lower section of the point cloud, the processing time is reduced while the closest-to-user traversable region

to the user is located. We evaluate our work using NYU-v2 dataset and determine that it has better balance

between accuracy and processing time than similar works.

Resumen Este documento presenta un enfoque para ayudar a las personas con discapacidad visual a encontrar la

región transitable más cercana al usuario en una nube de puntos. Nuestro trabajo tiene como objetivo reducir el

tiempo de procesamiento de esta tarea. El enfoque propuesto usa una red neuronal convolucional para segmentar

regiones del piso en la nube de puntos y criterios para determinar cuáles de estas regiones son transitables. La

red neuronal convolucional está diseñada para clasificar parches, lo que permite buscar el piso en ubicaciones

espećıficas de la nube. Encontramos que buscando solamente en la parte baja de la nube de puntos, el tiempo

de procesamiento se reduce a la vez que se encuentra la región transitable más cercana al usuario. Evaluamos

nuestro trabajo utilizando el conjunto de datos NYU-v2 y determinamos que tiene mejor balance entre exactitud

y tiempo de procesamiento que trabajos similares.

Keywords: Machine learning, floor detection, convolutional neural network, NYU-v2 dataset.

Palabras Clave: Aprendizaje de máquina, detección de piso, red neuronal convolucional, NYU-v2.

1 Introduction

Semantic segmentation of point clouds is the task of assigning a class label to each point in a point cloud
[19]. Its applications include 3D mapping, autonomous driving, mobile robotics and human assistance
[7, 36, 39].

Related to human assistance, semantic segmentation of point clouds is used in the development of
devices to assist visually impaired people to navigate safely in unknown environments [18, 17, 3, 9, 2].
Such devices are designed to be reliable, portable, affordable and provide real-time information [5, 31].

ISSN: 1137-3601 (print), 1988-3064 (on-line)
©IBERAMIA and the authors

http://journal.iberamia.org/


Inteligencia Artificial 70(2022) 51

However, as pointed out by [18, 17], these characteristics can still be improved. In this sense, reducing
the processing time of computational models helps to use more affordable and portable hardware. For
example, the use of MobileNets, a lightweight model used for object detection in RGB images, allow [17]
to detect objects at 14 fps using a Raspberry Pi model B. Also, by using PeleeNet, another lightweight
model used for object detection, [3] can detect objects at 8 fps using a smartphone.

We propose an approach to quickly find the closest-to-user traversable region in a point cloud. Different
from existing solutions that look for all floor regions, we only search those located in the lower section of
the point cloud. Such regions are closer to the user than those located in the upper section. Furthermore,
lower section concentrates floor regions [6]. This way, we can reduce the processing time.

An overview of our approach is presented in Figure 1. Given a point cloud, we first align it using the
rotation matrix provided by the device that generated it. Then, the aligned point cloud is divided into
lower and upper sections. To segment floor regions in lower section, we develop a convolutional neural
network (CNN). Once floor regions have been segmented, we apply 3 criteria to determine which ones are
traversable: if there are no obstacles above the region, if the region is attached to the bottom border of
the point cloud and if the region is wide enough for the user to pass through. Finally, among traversable
regions, we select the closest to the center of the point cloud.

Aligned point cloud

Lower section Upper section

Floor mask Obstacle mask

Traversable regions

Horizontal division

Floor detection with CNN

● Removal of floor regions that are below obstacles
● Removal of floor regions that aren’t attached the lower border
● Removal of floor regions narrower than a minimum size

Detection of objects located
closer than a given distance

Point cloud

Point cloud alignment

Closest traversable 
region

Selection of closest traversable region

Figure 1: Approach overview.

We test our approach using NYU-v2 dataset [24] and compared it with approaches for semantic
segmentation and traversable regions detection. Results show that our approach has better balance
between accuracy and processing time, making it suitable to quickly find the closest-to-user traversable
region in a point cloud. The main contributions of our work are:

� Development of a new CNN to segment floor regions in point clouds.

� Proposal of criteria to assess traversability of floor regions.

� Development of an algorithm to segment the closest-to-user traversable region in point clouds that
is faster than related works.



52 Inteligencia Artificial 70(2022)

The rest of the paper is structured as follow. Section 2 presents the state of the art of the art related
to traversable region detection. Section 3 shows our approach for detecting the closest-to-user traversable
region in a point cloud. Section 4 presents the results of the experiments conducted using our approach.
Finally, Section 5 presents the conclusions and future works.

2 Related Works

To detect traversable areas in point clouds, we found 2 approaches: floor plane detection and semantic
segmentation.

2.1 Floor plane detection

The goal of this approach is to identify the elements of a point cloud that belongs to floor plane. If
the point cloud is defined in a cartesian coordinate system, it is possible to assume that these points are
contained in a plane described by Equation 1. To find the parameters of Equation 1, [3, 27, 33, 2, 1, 26, 15]
use RANSAC while [34] tackle it as a linear optimization problem. Since more than one plane may exist
in the point cloud, the one that corresponds to the floor could be selected by the number of inliers [33, 1],
the distance of the plane from the origin [3, 26] or the normal orientation of the plane [2, 15].

Ax+By + Cz +D = 0 (1)

If it is assumed that the floor plane is parallel to the xz plane, points of interest could be found
by selecting those with y-coordinate close to perpendicular distance between the device that captured
the point cloud and the floor [20, 21, 38], those with normal unit vector close to (0, 1, 0) [23, 37] or a
combination of both [16, 13].

2.2 Semantic segmentation

To perform semantic segmentation in a point cloud, Wolf et al. [35] introduce a model called 3D entangled
forest classifier, that is a version of the random forest classifier modified to learn which labels are likely
to occur close to each other and in which specific geometric configuration.

Liu et al. [18] presents a version of PointGroup, modified to increase prediction capability while main-
taining a small number of parameters. After segmenting the point cloud, a 2D top-view representation
is generated to determine objects’ localization and passable regions.

In [32], a point cloud is voxelized and processed by a 3D fully convolutional neural network to produce
voxel labels. A trilinear interpolation layer transfers voxel labels back to the original point cloud repre-
sentation. The obtained point scores are used for inference in the 3D fully connected CRF to produce
the final output.

Schulz et al. [28] divide an RGB-D image into patches of size proportional to their depth values
and classify them using a CNN. Such CNN is trained using 8 input features: 3 corresponding to RGB
channels, 4 containing a simplified histogram of oriented depth and 1 for the height above the ground.

In [11, 22], a point cloud is first voxelized. Then, it is divided into cubic-shaped groups of voxels. Each
group is classified using a 3D CNN. The inferred labels are mapped back to the original point cloud. To
train the 3D CNN, [11] use the occupancy values of the voxels while [22] use the values of point density
and mean elevation of each voxel.

Our approach works on patches of a point cloud because, as pointed by [22], sliding window based
techniques are usually computationally cheaper.

3 Proposed approach

The proposed approach is detailed in Algorithm 1. A cartesian point cloud with grid-like structure must
be provided. Such point cloud can be obtained using an RGB-D sensor or a stereoscopic sensor. To use
the same coordinate system in all point clouds, the first step consists in align the point cloud using the
rotation matrix provided by the device that generates it.



Inteligencia Artificial 70(2022) 53

Next, the point cloud is divided horizontally into 2 sections. The goal of this division is to increase
the speed of floor identification by performing it only in lower section.

The process of floor detection is presented in Figure 2. The lower section is divided into patches using
a regular grid. Each patch is classified using a CNN to obtain a label. The label is assigned to the floor
mask in the corresponding position of the patch.

If there is at least one floor region, traversable region/s are identified. For this purpose, we propose
3 criteria:

1. If there are not obstacles above the floor region, it is traversable.

2. If the floor region is attached to the bottom of the mask, it is traversable.

3. If the floor region is wide enough for the user to pass through, it is traversable.

To apply the first criterion, the upper section of the point cloud is processed by identifying points
located closer than a safe distance thus obtaining the obstacle mask. Then, columns in floor mask are
reset if their corresponding column in obstacle mask is occupied.

To apply the third criterion, regions narrower than a given width are reset. The actual width of
regions in floor mask can be calculated by superimposed them in the point cloud.

After identifying traversable regions, if there is at least one floor region, the closest region to the center
of the mask is selected as the output of the algorithm. Such region is closer to the user and is faster to
reach.

Algorithm 1: Proposed approach

Input: Point cloud, sensor rotation matrix, division value, safe distance, floor detection CNN,
minimum region width value

Output: Mask with closest region or empty mask
Align the point cloud using the sensor rotation matrix;
Divide point cloud horizontally using the division value;
Get floor mask by processing the lower section with floor detection CNN;
if There are any floor regions in floor mask then

Get obstacle mask by identifying elements located closer than safe distance in the upper
section;
if There are any obstacle regions in obstacle mask then

Get indices of columns occupied by obstacles in obstacle mask;
Reset elements in floor mask that belongs to columns indicated by retrieved indices;

if There are any floor regions in floor mask then
Reset regions that are not attached to lower border;
Reset regions narrower than minimum region width value;
if There are any floor regions in floor mask then

Select region closest to center of the mask;
return Mask with closest region;

else
return Empty mask;

else
return Empty mask;

else
return Empty mask;

3.1 Proposed CNN

Similar to [22, 11], our CNN is based on LeNet [14]. It is composed by 3 convolutional layers, 3 pooling
layers and 2 fully connected layers.

CNNs are specialized neural networks for processing data with a known grid-like topology [8]. They
include convolutional, pooling and fully connected layers. Convolutional layers are defined by kernel size



54 Inteligencia Artificial 70(2022)

Label

Convolutional
neural
network

Lower section of point 
cloud

Patch

Floor mask

Figure 2: Floor detection process.

(K), number of channels (C), step (S), type of padding (P) and activation function (AF). Pooling layers
are defined by kernel size, step, padding and the pooling operation (O). Fully connected layers are defined
by the number of neurons (n) and activation function. [12] offer more information about CNN elements.

4 Experiments

4.1 Dataset

Like [35, 28], we used NYU-v2 dataset to evaluate our approach. This dataset is composed by 1449
640x480 RGB-D images, 795 for training and 654 for evaluation. For each image, a dense per-pixel
labeled mask is provided. In this work, 4 classes were distinguished: ground, structure, furniture and
props. Figure 3 shows the percentage of elements per class in training masks. It is noted that this dataset
is unbalanced.

Figure 3: Percentage of elements per class in training masks.

4.2 Experiments with the CNN

4.2.1 Hyperparameters selection

For convolutional layers, hyperparameters K = 3, S = 1 y P = 1 were selected because of [30, 29, 25]
recommendation. Since values of point cloud can be positive as well as negative, hyperbolic tangent



Inteligencia Artificial 70(2022) 55

(tanh) was selected as activation function. For input size, number of filters in convolutional layers and
number of neurons in the first fully connected layer, we explored the following values:

� Input size: (8, 8, 3), (16, 16, 3), (32, 32, 3), (64, 64, 3).

� Number of filters in convolutional layers: 16, 32, 64.

� Number of neurons in first fully connected layer: 16, 32, 64.

The different configurations of our CNN were developed using Tensorflow 2.4.1 and Keras 2.4.3 li-
braries. To configure the training process, we used default values of the hyperparameters, except for those
indicated in Table 1. Also, since NYU-v2 is unbalanced, we provided a vector containing class weights.

Table 1: Hyperparameters used for CNN training.
Hyperparameter Value
Epochs 64
Patience 6
Loss function Cross entropy

We use 80% of the training set to train the configurations and reserved 20% to validate them. To
generate examples and targets, point clouds and their corresponding masks were divided into patches.
For each mask patch, if labels of all elements were the same, its corresponding point cloud patch and the
unique label were stored as example and target respectively.

Similar to [35], class and balanced accuracy were used to evaluate the configurations. Results achieved
by these configurations are available in Appendix A. The one with input size (16, 16, 3), 16 filters in
convolutional layers and 64 neurons in first dense layer achieved higher floor class accuracy in validation
set. We identified this configuration as model 16-16-64. The structure of model 16-16-64 is summarized
in Table 2.

Table 2: Structure of the proposed CNN.
Layer Parameters

Input size = 16x16x3
Convolutional K = 3, C = 16, S = 1, P = 1, AF = tanh
Pooling K = 2, S = 2, O = average
Convolutional K = 3, C = 16, S = 1, P = 1, AF = tanh
Pooling K = 2, S = 2, O = average
Convolutional K = 3, C = 16, S = 1, P = 1, AF = tanh
Fully connected n = 64, AF = tanh
Fully connected n = 4, AF = softmax

Using model 16-16-64, we also explored different values of batch size and learning rate as follows:

� Batch size: 32, 64, 128, 256, 512

� Learning rate: 0.001, 0.0001

Results achieved by these configurations are available in Appendix B. The one with batch size 32 and
learning rate 0.001 achieved higher balanced accuracy in validation set.

4.2.2 CNN evaluation

To reduce the effect of randomness of weights initialization, model 16-16-64 was trained 10 times with dif-
ferent initial weights. Table 3 shows average scores achieved by the proposed CNN in NYU-v2 evaluation
set along with the results of [35]. Regarding the processing time, the proposed CNN achieved 149.037
ms. per point cloud running on an i7 laptop 8 x 2.2 GHz the method proposed by [35] achieved 730 ms.



56 Inteligencia Artificial 70(2022)

using an i7 laptop 8 x 2.4 GHz. Figure 4 present examples of predicted masks. Each row corresponds
to a different scene. First column shows the corresponding image. Second column presents the ground
truth. Last column shows the predictions.

Table 3: Accuracy scores and runtime for 4 semantic classes of NYU-v2 dataset. Best values in bold.

Model
Accuracy(%)

Runtime(ms)
Ground Struct Furnit. Props Balanced

3-D Entangled Forests [35] 98.800 87.900 73.900 40.400 75.025 730.000
Proposed CNN 93.301 76.489 60.264 23.312 63.345 149.037

Table 4 shows scores achieved by the proposed CNN in the detection of ground class against the other
ones. We also evaluated the method proposed by [17] for ground segmentation. This method proposes
looking for floor regions only in a proposed region. Limits of such region are related to floor height. In
the same way, we decide to look for only in regions below -1.109 m. We selected this value because the
mean floor height of training scenes is -1.309 m. Then we provide a threshold of 0.2 m. Regarding the
processing time, the proposed CNN achieved 84.048 ms. per point cloud running on an i7 laptop 8 x 2.2
GHz while the method proposed by [17] achieved 103.335 ms. running on the same device.

Table 4: Accuracy scores and runtime for 2 semantic classes of NYU-v2 dataset. Best values in bold.

Model
Accuracy(%)

Runtime(ms)
Ground Others Balanced

RANSAC-based model [17] 88.916 96.289 92.578 103.335
Proposed CNN 92.685 96.806 94.751 84.048

4.3 Traversable region detection

Floor segmentation was performed in lower fifth section of points clouds. The safe distance was set at
0.8 m. because of the average stride of a human is 0.780 m. [4]. The minimum floor region width was set
at 32 in. (∼ 0.8128 m.) since it is the minimum width for a door threshold according to [10]. Figure 5
shows examples of closest-to-user traversable area detection. Each row corresponds to a different scene.
First column shows the RGB image. Second column presents the ground truth in green. Last column
shows the segmented closest-to-user traversable region in green.

To measure execution time of our approach, all 1449 samples of NYU-v2 dataset were processed.
The resulting average time was 43.789 ms. running on an i7 laptop 8 x 2.2 GHz and 83.708 ms. on a
Raspberry Pi 4 Model B. Note that some instructions of the algorithm depend on whether the floor mask
found is empty or not. For this reason, the average time measured in a different dataset may vary.

5 Conclusions

Regarding the detection of ground class in NYU-v2 dataset with the proposed CNN, we observed a
dependency between the class accuracy of scenes and their mean floor height. Figure 6 presents the mean
floor height and ground class accuracy corresponding to scenes of Figure 4. A red dashed line represents
the mean floor height of training scenes, which corresponds to -1.309 m. Scenes with mean floor height
closer to this line have higher ground class accuracy.

Although our network could not improve the accuracy scores obtained by Wolf et al. [35] in NYU-
v2 dataset, we were able to reduce the processing time. While the difference in accuracy between the
2 models is 5.499%, our model works 4.898 times faster. We also compared a RANSAC-based model
designed for ground segmentation, which has less parameters than our CNN. This model obtained less
accuracy and demanded more processing time. We conclude that our CNN has better balance between
accuracy and computational cost than other available solutions.

Different from related works, our approach looks for floor regions only in the lower section of the
point cloud. As shown in Figure 5, we were able to retrieve the closest-to-user traversable area. At the



Inteligencia Artificial 70(2022) 57

Figure 4: Examples of predicted masks. Each row corresponds to a different scene. First column shows
the RGB image. Second column presents the ground truth. Last column shows the predictions. Ground
= green, structure = yellow, furniture = red, props = cyan.

same time, we managed to reduce the processing time of this task. For example, [17] reports 357.680
ms running on a Raspberry Pi 4 Model B while our approach achieved 83.708 ms running on the same
hardware. Similarly, [9] reports 50.000 ms running on a i7 2.2 GHz. while our approach achieved 43.789
ms running on the same hardware. Also, the processing time of our approach allows it to be part of an
ETA system since young adults take 387.096 ms. to perform 1 step [4]. This means that our approach
can process 8 scenes on the i7 8 x 2.2 GHz. and 4 scenes on the Raspberry PI Model B before the user
changes position.

In the future, we will work in improving the accuracy and proccessing of the proposed CNN. Also, we
plan to extend the usability of our approach to other datasets.

References

[1] K. Al-Muteb, M. Faisal, M. Emaduddin, M. Arafah, M. Alsulaiman, M. Mekhtiche, R. Hedjar,
H. Mathkoor, M. Algabri, and M.A. Bencherif. An autonomous stereovision-based navigation system



58 Inteligencia Artificial 70(2022)

Figure 5: Examples of detection of closest-to-user traversable region. Each row corresponds to a different
scene. First column shows the RGB image. Second column presents the predicted floor regions in green.
Last column shows the identified closest-to-user traversable region in green.

(ASNS) for mobile robots. Intelligent Service Robotics, 9(3):187–205, 2016.

[2] A. Aladren, G. Lopez-Nicolas, L. Puig, and J.J. Guerrero. Navigation assistance for the visually
impaired using rgb-d sensor with range expansion. IEEE Systems Journal, 10(3):922–932, 2016.

[3] J. Bai, Z. Liu, Y. Lin, Y. Li, S. Lian, and D. Liu. Wearable travel aid for environment perception
and navigation of visually impaired people. Electronics, 8(6), 2019.

[4] T. Barreira, D. A Rowe, M. Kang, and others. Parameters of walking and jogging in healthy young
adults. International Journal of Exercise Science, 3(1):10, 2010.

[5] Shripad Bhatlawande, Manjunatha Mahadevappa, Jayanta Mukherjee, Mukul Biswas, Debabrata
Das, and Somedeb Gupta. Design, development, and clinical evaluation of the electronic mobility
cane for vision rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
22(6):1148–1159, 2014.



Inteligencia Artificial 70(2022) 59

Figure 6: Relation between ground class accuracy and mean floor height in selected scenes of NYU-v2
dataset.

[6] C. Brust, S. Sickert, M. Simon, E. Rodner, and J. Denzler. Convolutional patch networks with
spatial prior for road detection and urban scene understanding.

[7] Erzhuo Che, Jaehoon Jung, and Michael J. Olsen. Object recognition, segmentation, and classifica-
tion of mobile laser scanning point clouds: A state of the art review. Sensors, 19(4), 2019.

[8] I. Goodfellow, Y. Bengio, and A Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[9] K. Imai, I. Kitahara, and Y. Kameda. Detecting walkable plane areas by using rgb-d camera and
accelerometer for visually impaired people. volume 2017-June, pages 1–4, 2018.

[10] International Code Council. Means of Egress. In International Building Code, chapter 10. Interna-
tional Code Council, USA, Falls Church, Va, 2018.

[11] H. Jing and Y. Suya. Point cloud labeling using 3d convolutional neural network. In 2016 23rd
International Conference on Pattern Recognition (ICPR), pages 2670–2675, Dec 2016.

[12] S Khan, S. Rahmani, S.A.A Shah, M. Bennamoun, G. Medioni, and S. Dickinson. A Guide to
Convolutional Neural Networks for Computer Vision. Morgan & Claypool Publishers, 2018.

[13] Y. Kida, S. Kagami, T. Nakata, M. Kouchi, and H. Mizoguchi. Human finding and body property
estimation by using floor segmentation and 3d labelling. volume 3, pages 2924–2929, 2004.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[15] A. Leone, G. Diraco, and P. Siciliano. An automated active vision system for fall detection and
posture analysis in ambient assisted living applications. pages 2301–2306, 2010.

[16] B. Li, J.P. Munoz, X. Rong, Q. Chen, J. Xiao, Y. Tian, A. Arditi, and M. Yousuf. Vision-based
mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing,
18(3):702–714, 2019.

http://www.deeplearningbook.org
http://www.deeplearningbook.org


60 Inteligencia Artificial 70(2022)

[17] Z. Li, F. Song, B.C. Clark, D.R. Grooms, and C. Liu. A wearable device for indoor imminent danger
detection and avoidance with region-based ground segmentation. IEEE Access, 8:184808–184821,
2020.

[18] Huayao Liu, Ruiping Liu, Kailun Yang, Jiaming Zhang, Kunyu Peng, and Rainer Stiefelhagen. Hida:
Towards holistic indoor understanding for the visually impaired via semantic instance segmentation
with a wearable solid-state lidar sensor. In 2021 IEEE/CVF International Conference on Computer
Vision Workshops (ICCVW), pages 1780–1790, 2021.

[19] S. Liu, M. Zhang, P. Kadam, and C.C.J. Kuo. 3D Point Cloud Analysis: Traditional, Deep Learning,
and Explainable Machine Learning Methods. Springer International Publishing, 2021.

[20] H. Macher, T. Landes, and P. Grussenmeyer. Point clouds segmentation as base for as-built bim
creation. volume 2, pages 191–197. Copernicus GmbH, 2015.

[21] S. Murakami, M. Shimakawa, K. Kivota, and T. Kato. Study on stairs detection using rgb-depth
images. pages 1186–1191. Institute of Electrical and Electronics Engineers Inc., 2014.

[22] B. Nagy and C. Benedek. 3d cnn-based semantic labeling approach for mobile laser scanning data.
IEEE Sensors Journal, 19(21):10034–10045, Nov 2019.

[23] M. Nakagawa and T. Kobayashi. Real-time floor recognition in indoor environments using tof camera.
volume 1, pages 399–402. Asian Association on Remote Sensing, 2016.

[24] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

[25] S. Öztürk, U. Özkaya, B. Akdemir, and L. Seyfi. Convolution kernel size effect on convolutional
neural network in histopathological image processing applications. In 2018 International Symposium
on Fundamentals of Electrical Engineering (ISFEE), pages 1–5, 2018.

[26] J. Pardeiro, J.V. Gómez, D. Álvarez, and L. Moreno. Learning-based floor segmentation and recon-
struction. Advances in Intelligent Systems and Computing, 253:307–320, 2014.

[27] R.P. Saputra and P. Kormushev. Casualty detection for mobile rescue robots via ground-projected
point clouds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 10965 LNAI:473–475, 2018.

[28] H. Schulz, N. Höft, and S. Behnke. Depth and height aware semantic rgb-d perception with convo-
lutional neural networks. In Proc. Eur. Conf. Neural Netw.(ESANN), pages 463–468, 2015.

[29] Sicara. About convolutional layer and convolution kernel, 2018.

[30] Stanford University. Convolutional neural networks (cnns / convnets), 2020.

[31] Ruxandra Tapu, Bogdan Mocanu, and Titus Zaharia. Wearable assistive devices for visually im-
paired: A state of the art survey. Pattern Recognition Letters, 137:37–52, 2020. Learning and
Recognition for Assistive Computer Vision.

[32] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese. Segcloud: Semantic segmentation of 3d
point clouds. In 2017 international conference on 3D vision (3DV), pages 537–547. IEEE, 2017.

[33] I. Van Crombrugge, L. Mertens, and R. Penne. Fast free floor detection for range cameras. volume 4,
pages 509–516. SciTePress, 2017.

[34] L. Wang, Z. Zhou, J. Wu, Y. Liu, and X. Zhao. Support-plane estimation for floor detection to
understand regions’ spatial organization. pages 2576–2581. Institute of Electrical and Electronics
Engineers Inc., 2014.

[35] D. Wolf, J. Prankl, and M. Vincze. Enhancing semantic segmentation for robotics: The power of
3-d entangled forests. IEEE Robotics and Automation Letters, 1(1):49–56, 2016.



Inteligencia Artificial 70(2022) 61

[36] Yuxing Xie, Jiaojiao Tian, and Xiao Xiang Zhu. Linking points with labels in 3d: A review of point
cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8(4):38–59, 2020.

[37] K. Yang, K. Wang, R. Cheng, and X. Zhu. A new approach of point cloud processing and scene
segmentation for guiding the visually impaired. 2015.

[38] C. Zatout, S. Larabi, I. Mendili, and S. Ablam Edoh Barnabe. Ego-semantic labeling of scene
from depth image for visually impaired and blind people. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 0–0, 2019.

[39] Jiaying Zhang, Xiaoli Zhao, Zheng Chen, and Zhejun Lu. A review of deep learning-based semantic
segmentation for point cloud. IEEE Access, 7:179118–179133, 2019.



62 Inteligencia Artificial 70(2022)

A Results achieved by different configurations of the proposed
CNN.

Input shape Filters Neurons
Accuracy

Ground Struct Furnit. Props Balanced
(8, 8, 3) 16 16 0.924805 0.752441 0.630859 0.221558 0.632324
(8, 8, 3) 16 32 0.923828 0.75 0.628418 0.222168 0.630859
(8, 8, 3) 16 64 0.924316 0.746582 0.637207 0.222168 0.632812
(8, 8, 3) 32 16 0.921875 0.746582 0.634277 0.225708 0.632324
(8, 8, 3) 32 32 0.921387 0.750488 0.633301 0.221802 0.631836
(8, 8, 3) 32 64 0.919434 0.749512 0.637695 0.217773 0.630859
(8, 8, 3) 64 16 0.92041 0.749023 0.638184 0.217529 0.631348
(8, 8, 3) 64 32 0.921387 0.750488 0.636719 0.216187 0.631348
(8, 8, 3) 64 64 0.920898 0.753418 0.637695 0.211548 0.630859

(16, 16, 3) 16 16 0.928711 0.761719 0.571777 0.288574 0.637695
(16, 16, 3) 16 32 0.932617 0.750977 0.576172 0.294678 0.638672
(16, 16, 3) 16 64 0.935059 0.752441 0.587402 0.277832 0.638184
(16, 16, 3) 32 16 0.920898 0.747559 0.609375 0.270996 0.637207
(16, 16, 3) 32 32 0.90918 0.760254 0.629395 0.227173 0.631348
(16, 16, 3) 32 64 0.914551 0.74707 0.628906 0.254395 0.63623
(16, 16, 3) 64 16 0.921387 0.737305 0.620605 0.273682 0.638184
(16, 16, 3) 64 32 0.919922 0.750977 0.635742 0.233765 0.635254
(16, 16, 3) 64 64 0.918457 0.754883 0.643555 0.217651 0.633789
(32, 32, 3) 16 16 0.911621 0.833984 0.500977 0.170288 0.604004
(32, 32, 3) 16 32 0.913574 0.802734 0.59375 0.105347 0.604004
(32, 32, 3) 16 64 0.904297 0.797363 0.587891 0.15332 0.61084
(32, 32, 3) 32 16 0.908203 0.800293 0.569824 0.161865 0.609863
(32, 32, 3) 32 32 0.90625 0.79541 0.562012 0.189209 0.613281
(32, 32, 3) 32 64 0.908203 0.792969 0.578125 0.174683 0.613281
(32, 32, 3) 64 16 0.910156 0.796875 0.570801 0.174316 0.613281
(32, 32, 3) 64 32 0.911133 0.793457 0.583008 0.163818 0.612793
(32, 32, 3) 64 64 0.911133 0.791504 0.592285 0.157349 0.613281
(64, 64, 3) 16 16 0.897461 0.750488 0.508301 0.215454 0.592773
(64, 64, 3) 16 32 0.894043 0.765625 0.519043 0.19751 0.594238
(64, 64, 3) 16 64 0.887695 0.761719 0.521484 0.206299 0.594238
(64, 64, 3) 32 16 0.890625 0.759766 0.533203 0.194458 0.594727
(64, 64, 3) 32 32 0.888184 0.763184 0.53418 0.191772 0.594238
(64, 64, 3) 32 64 0.890137 0.762695 0.538574 0.182739 0.59375
(64, 64, 3) 64 16 0.890625 0.753906 0.52832 0.200562 0.593262
(64, 64, 3) 64 32 0.888184 0.759277 0.536133 0.179321 0.59082
(64, 64, 3) 64 64 0.885254 0.746094 0.539551 0.190552 0.590332



Inteligencia Artificial 70(2022) 63

B Results achieved by model 16-16-64 using different values of
batch size and learning rate.

Batch size Learning rate
Accuracy

Ground Struct Furnit. Props Balanced
32 0.001 0.939453 0.751953 0.603027 0.277588 0.643066
32 0.0001 0.929199 0.705566 0.580078 0.307373 0.630371
64 0.001 0.922852 0.727051 0.603516 0.258789 0.62793
64 0.0001 0.928223 0.708008 0.603516 0.269531 0.627441
128 0.001 0.928711 0.720703 0.595215 0.268311 0.628418
128 0.0001 0.931152 0.703613 0.591309 0.282715 0.626953
256 0.001 0.929199 0.713379 0.591309 0.270264 0.625977
256 0.0001 0.931152 0.700195 0.586914 0.283203 0.625488
512 0.001 0.931152 0.704102 0.592773 0.280518 0.626953
512 0.0001 0.932617 0.693848 0.589355 0.289307 0.626465


	Introduction
	Related Works
	Floor plane detection
	Semantic segmentation

	Proposed approach
	Proposed CNN

	Experiments
	Dataset
	Experiments with the CNN
	Hyperparameters selection
	CNN evaluation

	Traversable region detection

	Conclusions
	Results achieved by different configurations of the proposed CNN.
	Results achieved by model 16-16-64 using different values of batch size and learning rate.

