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ABSTRACT

This paper provides a method to assess the risk relief deriving from a foreign
expansion by a life insurance company. We build a parsimonious continuous-
time model for longevity risk that captures the dependence across different
ages in domestic versus foreign populations. We calibrate the model to portray
the case of a UK annuity portfolio expanding internationally toward Italian
policyholders. The longevity risk diversification benefits of an international
expansion are sizable, in particular when interest rates are low. The benefits
are judged based on traditional measures, such as the Risk Margin or volatility
reduction, and on a novel measure, the Diversification Index.
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376 C. DE ROSA, E. LUCIANO AND L. REGIS

1. INTRODUCTION

In the last 20 years, insurance companies have been expanding internationally,
via subsidiaries operating in different countries or via cross-border mergers
and acquisitions. From the middle of the Nineties, in Europe, due to the cre-
ation of a common regulatory framework, and in the US as well, cross-border
expansions and M & A operations in the insurance sector trended upward (see
Ma and Pope, 2003). Cummins et al. (1999) argue that geographical diver-
sification was a primary determinant of mergers and acquisitions in the US
insurance industry in the nineties because geographically diversified firms were
more likely to be the target of acquisitions. The largest insurers and reinsurers
are indeed multinational companies, with subsidiaries and branches located
in several countries. Schoenmaker and Sass (2016) report that in Europe, as
of 2012, the share of cross-border activity in the insurance sector is higher
than in the banking one and that the degree of internationalization of the
25 largest European insurers increased over the period 2000–2012, despite the
financial crisis. The OECD, as of 2014, reports that on average around 30%
of the gross premiums of life insurance companies in 20 European countries,
United States, and Japan comes from foreign-based controlled undertakings.
Reinsurance companies have traditionally been more geographically diversi-
fied than insurance companies (Cummins and Xie, 2008) because their port-
folios are more easily disconnected from the geographical localization of their
branches.

An interesting, but, up to our knowledge, so far overlooked effect of inter-
nationalization for life insurers and reinsurers is longevity risk pooling. Indeed,
even if – in expectation – longevity has been steadily increasing on a worldwide
scale, idiosyncratic longevity risks of different populations are different and
may be nonperfectly correlated across countries. As a result, pooling portfo-
lios of policies written on the lives of different populations allows to diversify
longevity risk.

The present paper aims at filling a gap in the literature by showing that
the standard, solvency-based measures of riskiness can be lowered, especially
in low-interest-rate environment, thanks to longevity diversification, and that
even non-VaR-based risk decreases. To this end, we first introduce a novel par-
simonious model for the joint mortality dynamics of policyholders in different
countries.

We measure the benefits of longevity risk pooling for specific insurance
companies using two standard measures, namely the change in the Solvency-
II risk margin and in the volatility of the mortality intensity. We introduce
and compute a novel diversification index, which can be defined thanks to our
longevity model, because it stems from the correlation structure of different
populations and cohorts within them. The three measures, analyzed together,
provide complementary views to assess the risk effects of the international
expansion. While the risk margin reduction, which was analyzed by De Rosa
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GEOGRAPHICAL DIVERSIFICATION AND LONGEVITY RISK MITIGATION 377

et al. (2018), offers a measure of the mitigation of the “tail” risk because it rep-
resents the loss in a worst-case scenario occurring with a low probability, the
diversification index provides a synthetic indicator of how dissimilar from the
initial portfolio the portfolio obtained after the expansion is.

In a numerical application, which portrays the situation of a UK annuity
provider that can expand to Italy, we first assess that the model is able to fit well
the observed mortality rates of individuals aged 65–75 years in the two popu-
lations, while capturing, using the Gaussian mapping technique, the imperfect
correlations observed across ages and populations. Based on our model esti-
mates, we then compute our international diversification measures for different
portfolio expansions. We show that the risk margin can be as high as 3% as a
proportion of the actuarial value, in the case of a foreign expansion, targeted to
those cohorts in the Italian population who have low covariance with the ini-
tial annuity portfolio. We also highlight that longevity risk mitigation effects
are more sizable when the interest rate – a flat term structure, for simplicity –
is lower.

The paper unfolds as follows. Section 2 reviews the background literature
on multipopulation longevity modeling. Section 3 describes the set-up and the
problem of the insurer. Section 4 presents our longevity risk model. Section 5
defines the longevity risk diversification measures and their application to
assess the benefits of geographical diversification. Section 6 provides a cali-
brated application, computes the diversification measures for various portfolio
choices, and provides sensitivity analysis to relevant parameters. Appendix A
details the Gaussian mapping technique used to estimate the correlation struc-
ture, while Appendix B compares two ways of achieving the international
diversification: a physical one, in which a foreign affiliate is opened, and a
synthetic one, through a longevity swap.

2. BACKGROUND LONGEVITY LITERATURE

To model the risk of longevity, that is, the risk that policyholders live longer
than expected, we set ourselves in the well-established continuous-time stochas-
tic mortality setting initiated by Milevsky and Promislow (2001) that models
the death of individuals as a Cox process. The time to death of an individual
belonging to cohort xi is the first jump time of a Poisson process with stochastic
intensity.

The literature on multipopulation models is rich in the discrete-time set-
ting (for an overview, see Enchev et al., 2017). The well-known Lee and Carter
(1992) model has been extended to describe the joint mortality of multiple pop-
ulations. The seminal paper by Li and Lee (2005) introduced the modeling of
different populations within the Lee–Carter model by assuming “coherence”,
that is, convergence in the long run, due to a common driving factor for every
population. In their model, the correlation structure is based on a common
period effect across populations, leading to perfect correlation among their
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378 C. DE ROSA, E. LUCIANO AND L. REGIS

ages (see Haberman et al., 2014). More recently, Yang and Wang (2013) pro-
posed a different specification of the Li and Lee (2005) model, which accounts
for population-specific components and a richer correlation structure:

log(μ(i)
t,x)= α(i)

x +B(i)
x ·Kt

(i) + ε
(i)
x,t,

where α(i)
x ,B

(i)
x , ε

(i)
x,t ∈R are the idiosyncratic component, common factor, and

error term, respectively. All the components are population-specific, and the
errors ε ix,t are correlated across populations and ages. The number of parame-
ters to be estimated obviously increases: two parameters per each age of each
population, plus the parameters of the multivariate stochastic processes K (i)

t

for i= 1, ...N, plus a (symmetric) N ×N matrix of parameters to describe
the error terms for each age (i.e.(N · (N − 1))/2)×M parameters, where M
is the number of ages considered. However, it provides increasing modeling
flexibility.

Fewer multipopulation models so far have taken a continuous-time
approach, following the insights of Dahl et al. (2008). Nonetheless, continuous-
time models, which provide a natural stochastic extension to the traditional
actuarial mortality laws, have proved to be flexible and accurate in fitting the
mortality surface of single populations (see, for instance, Luciano et al., 2008).
The main advantage of continuous-time longevity modeling, especially when
the mortality intensity is an affine process, is the possibility of having sur-
vival probabilities, both single and joint, in closed form, as a function of the
longevity intensity and dependence parameters. This gives the possibility to
compute in the same form hedging ratios for longevity risk hedging (see for
instance Luciano et al., 2012). Last but not least, the price of survival bonds
and longevity derivatives obtains quite easily. Another advantage is the pos-
sibility of coupling the affine longevity intensity with an affine modeling of
instantaneous interest rate, which is the most renowned form of interest-rate
modeling in Finance. As a result, closed-form expressions for reserves and fair
values obtain, together with joint hedges of interest rate and longevity risk (see
again Luciano et al., 2012). Affine interest-rate modeling gained popularity in
the Financial Community, both Academic and non, because of its analytical
properties, useful for valuation, optimization (hedging), and calibration. In the
same vein, affine survival modeling seems a promising modeling avenue.

The model we develop below extends the basis-risk model presented in
De Rosa et al. (2017) to a multipopulation setting. Both the basis-risk model
and the one we are going to develop below are a stochastic extension of the
deterministic Gompertz mortality law, a benchmark in the classical modeling
of mortality arrival rates. Jevtić and Regis (2019) and Sherris et al. (2020) use
stochastic processes belonging to the affine class to model the mortality of mul-
tiple cohorts and populations. While these papers propose applications based
on the use of three Brownian risk sources, we assume as many dependent risk
factors as domestic generations and an idiosyncratic source that drives the
mortality intensity of the foreign population. Thus, we are able to capture
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the correlation structure of different generations within and across popula-
tions accurately, similarly to Yang and Wang (2013) in discrete time while
preserving a good level of parsimony, especially when the number of popu-
lations considered increases. In our model, also, the mortality intensities of
single cohorts and generations follow square-root processes, and therefore can-
not become negative in our setting, while they are Gaussian in Sherris et al.
(2020). This desirable feature implied by non-gaussianity, combined with our
rich dependence structure, limits the availability of analytical formulas for
covariances across ages and populations. Indeed, by allowing for an approx-
imation proposed in the credit risk domain by Brigo and Alfonsi (2005) and
widely adopted, we are able to provide closed-form expressions for variances
and covariances within and across populations.

3. SET-UP

We consider a filtered probability space (�,F , P), endowed with the usual
properties, where F is the filtration containing the information regarding all
the relevant variables and P is the historical probability measure. In this prob-
ability space, the mortality intensities of individuals are described as stochastic
processes, and longevity risk, that is the risk of unexpected fluctuations in the
likelihood of deaths of individuals, arises. In what follows, we will consider
longevity risk as the only source of risk in our setup.

We consider an Annuity Provider, or Life-Insurer, based in a certain coun-
try (that we call domestic), having a portfolio of deferred annuities written on
different cohorts belonging to the domestic population. Let X = {x1, . . . , xm}
be the set of annuitants’ ages at time zero, and let ni, for i= 1, . . . ,m, be the
number of annuities sold to people aged xi. When an annuity is sold at time
zero, the annuitant pays the initial premium. We compute the actuarial value
of the liabilities net of that premium. After signing the contract, the annuitant
will receive a series of fixed annual instalments R, starting from the year-end of
his 65th birthday if xi < 65, or immediately if xi ≥ 65, until his death, that may
happen at most when he reaches a final age ω.

3.1. Portfolio value

Consistently with the Solvency II regulation, we write the overall value �0(t)
of the liability portfolio of a life insurer at time t is the sum of two components:
the Actuarial Value AV�0 (t), which is the sum of the actuarial values of each
individual contract Ni(t) and represents a best estimate of the liabilities of the
insurer, and the Risk Margin RM�0 (t) of the portfolio itself:

�0(t)=AV�0 (t)+RM�0 (t)=
m∑
i=1

niNi(t)+RM�0 (t). (3.1)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.12
Downloaded from https://www.cambridge.org/core. Fundacion Mapfre Centro de Documentacion, on 20 Sep 2021 at 07:19:13, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.12
https://www.cambridge.org/core


380 C. DE ROSA, E. LUCIANO AND L. REGIS

The actuarial value of the contract is its fair premium. Let τ =max (65−
xi, 0) be the number of years before the individual i aged xi reaches age 65. If
τ > 0, then the contract is a deferred annuity, while if τ = 0 the contract is an
immediate annuity. Because we consider no risk source other then longevity
risk, the actuarial value of an annuity can be expressed as

Ni(t)=D(t, k)Si(t, k)

[
R

ω−k∑
u=1

D(k, k+ u)Si(k, k+ u)

]
, (3.2)

where k= t+ τ , D(t, s), s≥ t denotes the deterministic financial discount fac-
tor, D(t, s)= e−r(s−t), r ∈R and Si(t, ·) is the time-t survival probability curve of
the individual aged xi at time t.

We define the portfolio risk margin RM�0 (t) as the discounted Value-at-
Risk, at a given confidence level α ∈ (0, 1), of the unexpected portfolio’s future
actuarial value at a given time horizon T :

RM�0 (t)=D(t, t+T) ·VaRα

(
AV�0 (t+T)−Et[AV�0 (t+T)]

)
, (3.3)

=D(t, t+T) · inf {l ∈R
+ : P(AV�0 (t+T)

−Et[AV�0 (t+T)]> l)< 1− α} , (3.4)

where P( · ) denotes the probability of the event that the future actuarial value
exceeds its time-t expected value by more than l.

3.2. Portfolio expansion

We consider the case in which the Insurer wants to expand the size of her annu-
ity portfolio and can choose between two alternative strategies. The first one
consists simply in selling new contracts to her own domestic population. In this
case, we denote with n′

i the number of new contracts sold to individuals aged
xi, with �D the portfolio composed of just these new annuities, and with �1

the portfolio after the expansion, composed of the old and the new contracts.
The actuarial value of the new portfolio is simply

AV�D(t)=
m∑
i=1

n′
iNi(t), (3.5)

and

AV�1 (t)=AV�0 (t)+AV�D(t). (3.6)

The value of the total portfolio �1 is the sum of the actuarial value of the
old portfolio, the actuarial value of the new portfolio and the risk margin of
the total portfolio:

�1(t)=AV�1 (t)+RM�1 (t)=AV�0 (t)+AV�D(t)+RM�1 (t). (3.7)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.12
Downloaded from https://www.cambridge.org/core. Fundacion Mapfre Centro de Documentacion, on 20 Sep 2021 at 07:19:13, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.12
https://www.cambridge.org/core


GEOGRAPHICAL DIVERSIFICATION AND LONGEVITY RISK MITIGATION 381

The second possible strategy is to acquire a new portfolio of annuities �F ,
written on a foreign population.We assume that, for each age xi, the number of
annuities written on people aged xi in the foreign population is n

f
i . The actuarial

value of portfolio �F is

AV�F (t)=
m∑
i=1

nfi N
F
i (t). (3.8)

We denote with �2 the portfolio obtained after the expansion toward the
foreign country. The actuarial value of such portfolio is

AV�2 (t)=AV�0 (t)+AV�F (t) (3.9)

and its overall value is

�2(t)=AV�2 (t)+RM�2 (t)=AV�0 (t)+AV�F (t)+RM�2 (t). (3.10)

Notice that the original portfolio and the one obtained after the expansion
do not have the same actuarial value, neither when the expansion is domestic
nor foreign. The risk margin of the two portfolios is different as well.

4. LONGEVITY RISK MODELING

In this section, we propose a novel, parsimonious continuous-time model to
describe the evolution of the mortality intensities of several cohorts in two
different populations. The intensity of one population (the “foreign” one)
is a linear combination of the other population’s intensity (the benchmark,
“domestic” one) and of an idiosyncratic risk factor. This makes the whole
correlation structure across populations dependent on the weight of the linear
combination.

To preserve tractability, we adopt stochastic processes belonging to the
affine family. To ensure non-negativity of the intensities, we consider square-
root processes of the Cox et al. (1985) type for the intensities. In defining the
features of the model, we aim at:

• accounting for different generations and populations parsimoniously;
• being able to compute the correlations between mortality intensities of

different populations1;
• preserving as far as possible analytical tractability, while guaranteeing

mortality intensity nonnegativity;
• being able to define a measure of overall (not tail) longevity diversification

of different populations explicitly.

The model will reach these aims. In De Rosa et al. (2017), it is shown that
its single-population version can be coupled with one of the best known mod-
els for interest rate risk (the CIR model) and still give analytic solutions, so
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382 C. DE ROSA, E. LUCIANO AND L. REGIS

that it could be extended to compute the VaR from longevity and interest
rate risk. It also permits the computation of sensitivities and hedging ratios
(greeks) explicitly. In our more complex multipopulation version, we are still
able to obtain closed-form expressions for average survival probabilities and
variances. However, the use of non-Gaussian processes limits the availability
of closed-form expressions for the whole Variance/Covariance structure. To
reconstruct them, we use an approximation technique applied by Brigo and
Alfonsi (2005) in the credit risk domain.

4.1. Mortality intensities and survival probabilities

Let us consider two populations, each containing m different cohorts. The first
population is called the domestic population and the second one is called the
foreign population. A given cohort i, with i= 1, . . . ,m, belonging to one of the
two populations, is identified by the (common) initial age xi at time zero. The
set X of initial ages is common to the two populations.

Domestic population
The mortality intensity of each cohort xi, for i= 1, . . . ,m, belonging to the
domestic population is denoted with λdi , and follows a nonmean reverting CIR
process:

dλdi (t)= (ai + biλdi (t))dt+ σi

√
λdi (t)dWi(t), (4.1)

where ai, bi, σi, λdi (0) ∈R
++ are strictly positive real constants and theWi’s are

instantaneously correlated standard Brownian Motions: dWi(t)dWj(t)= ρijdt
with i, j ∈ {1, . . . ,m}. As a consequence, the mortality intensities of two
different cohorts belonging to the domestic population are instantaneously
correlated, as soon as ρi,j �= 0.

Foreign population
The mortality intensity of cohort xi belonging to the foreign population is
denoted with λ

f
i and is given by the convex combination of the mortality inten-

sity of the corresponding cohort belonging to the domestic population λdi and
an idiosyncratic component λ′, which affects the foreign population only and
that depends on the initial age xi in a deterministic way,2 that is,

λ
f
i (t)= δiλ

d
i (t)+ (1− δi)λ′(t;xi), (4.2)

where

dλ′(t;xi)= (a′ + b′dλ′(t;xi))dt+ σ ′√dλ′(t;xi)dW ′(t), (4.3)

with δi ∈ [0, 1].3 The functions a′, b′ and σ ′ are positive constants, whileW ′ is a
standard Brownian Motion, that is assumed to be independent ofWi for each
i= 1, . . . ,N.
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Intuitively, the idiosyncratic risk sourceW ′ is population-specific, in the sense
that it is common to all the cohorts of the foreign population. Nonetheless,
each foreign cohort xi has a specific sensitivity to the idiosyncratic component
λ′(t;xi) that is given by the parameter δi, which is, instead, cohort-specific. The
mortality intensities of two different cohorts of the foreign population are cor-
related, and the correlation between λ

f
i and λ

f
j depends both on the correlation

between λdi and λdj and on the weights δi and δj. Moreover, thanks to the pres-
ence of the idiosyncratic component λ′ affecting the foreign population, our
model allows to account for the nonperfect correlation between cohorts across
the two populations. The correlation structure among the different cohorts of
the two populations will be derived in Appendix A.

From (4.1) we have that the survival probability of generation xi in the
domestic population is given by

Sdi (t,T)=Ad
i (t,T)e

−Bdi (t,T)λdi (t), (4.4)

where

Ad
i (t,T)=

(
2γie

1
2 (γi−bi)(T−t)

(γi − bi)
(
eγi(T−t) − 1

)+ 2γi

) 2ai
σ2i

, (4.5)

Bd
i (t,T)=

2
(
eγi(T−t) − 1

)
(γi − bi)

(
eγi(T−t) − 1

)+ 2γi
, (4.6)

with γi =
√
b2i + 2σ 2

i . Similarly, for the foreign population we have

Sfi (t,T)=Ad
i (t,T)A

′(t,T)e−Bdi (t,T)δiλdi (t)−B′(t,T)(1−δi)λ′
i(t), (4.7)

where

A′(t,T)=
(

2γ ′e
1
2 (γ

′−b′)(T−t)

(γ ′ − b′)
(
eγ ′(T−t) − 1

)+ 2γ ′

) 2a′
(σ ′)2

, (4.8)

B′(t,T)= 2
(
eγ ′(T−t) − 1

)
(γ ′ − b′)

(
eγ ′(T−t) − 1

)+ 2γ ′ , (4.9)

with γ ′ =√
(b′)2 + 2(σ ′)2.

Appendix A studies the Variance/Covariance Structure of the domestic
intensities, the foreign ones, and the covariance of the domestic and foreign.
It adopts an approximation, introduced and widely adopted in the credit
risk domain (Brigo and Mercurio, 2001), known as Guassian mapping (see
Brigo and Alfonsi, 2005), which also provides us with clear advantages in the
calibration procedure.
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384 C. DE ROSA, E. LUCIANO AND L. REGIS

5. MEASURING THE LONGEVITY RISK EFFECTS OF GEOGRAPHICAL
DIVERSIFICATION

In the following paragraphs, we comment on some measures of longevity risk
in a portfolio, which allow us to appreciate the degree of geographical diversifi-
cation achieved through a foreign expansion of the annuity portfolio. The first
measure is thePercentage RiskMargin of the portfolio, computed à la Solvency
II. Comparing this measure before and after a portfolio expansion allows to
appreciate the economic benefit of a foreign expansion. A reduction in the per-
centage risk margin is connected with a reduction of tail risk, evaluated as the
portfolio loss in a worst-case scenario.

The second measure we comment on is the Standard Deviation of the
Portfolio Mortality Intensity, which is the intensity as a weighted average of
the cohort-based mortality intensities entering the portfolio. A reduction of
this quantity indicates a stronger concentration of the distribution of the port-
folio mortality intensity around its mean, denoting a reduction of longevity
risk.

Finally, we introduce the Diversification Index (DI) as an average of the
degree of dissimilarity of the mortality intensities of the cohorts in differ-
ent populations. This measure is a synthetic way of quantifying the level of
diversification achieved by a foreign expansion.

5.1. Percentage risk margin

To be able to compare the effects of an expansion, we consider first a normal-
ized quantity that is, the ratio of the risk margin and the actuarial value of a
portfolio �, namely a percentage risk margin:

%RM� = RM�(t)
AV�(t)

. (5.1)

A lower percentage risk margin denotes a lower percentage loss in the
worst-case scenario, relative to the portfolio value. Hence, reducing this mea-
sure is beneficial for the company in two respects. First, it indicates a mitigation
in the risk connected to adverse scenarios. In this sense, the risk margin can be
considered as a measure of the systemic risk that the company may generate,
by triggering losses that will hit its creditors. Second, it represents a capital
requirement reduction, which frees up resources. Because the risk margin can
be interpreted as both a capital requirement and a measure of the loss the com-
pany can generate – at a given level of confidence – among its creditors, it is
then conceivable that minimizing the percentage risk margin aligns the inter-
ests of both the insurance company and its regulators. In what follows, we take
the point of view of the insurer, taking for granted the alignment of her interest
with the ones of the regulator.
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5.2. Standard deviation of the portfolio mortality intensity

Another measure of the diversification effects deriving from longevity risk
pooling across populations can be derived by looking at the change in the
standard deviation of the portfolio mortality intensity pre- and post-foreign
expansion. Given an annuity portfolio �, we define its portfolio mortality
intensity λ� as the weighted average of the mortality intensities of each genera-
tion in the portfolio, where the weights are the percentages of contracts written
on each generation. Considering the initial domestic portfolio �0, let ndi be the
number of contracts sold to generation i belonging to the domestic population,
and let nd =∑m

i=1 n
d
i be the total number of contracts in the portfolio. Then, we

define λ�0
as

λ�0
(t)=

m∑
i=1

ndi
nd

λdi (t)=
m∑
i=1

wd
i λ

d
i (t), (5.2)

where ωd
i = ndi

nd is the weight for each generation i of the domestic population.
Similarly, let n= nd + nf be the total number of contracts in the portfolio, �2,
after a foreign expansion in which nf contracts are written on the target foreign
population, nfi on each generation i. The mortality intensity of the portfolio �2

is given by

λ�2
(t)=

m∑
i=1

ndi
n

λdi (t)+
nfi
n

λ
f
i (t)

=
m∑
i=1

wd,�2

i λdi (t)+
m∑
i=1

wf ,�2

i λ
f
i (t), (5.3)

where wd,�2

i = ndi
n and wf ,�2

i = nfi
n represent the weights in the portfolio for each

generation of the domestic and foreign population, respectively.
Starting with the initial domestic portfolio �0 and its mortality intensity

λ�0
defined in (5.2), we have that

Var0
(
λ�0

(t)
)=Var0

(
m∑
i=1

wd
i λ

d
i (t)

)
(5.4)

=
m∑
i=1

(wd
i )

2Var0
(
λdi (t)

)+ 2
∑
i<j

wd
i w

d
j Cov0

(
λdi (t), λ

d
j (t)

)
. (5.5)

Thus, we define the standard deviation of the portfolio �0 mortality intensity
as

σλ(�0)=
√
Var0

(
λ�0 (t)

)
. (5.6)
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Similarly, considering the post expansion portfolio �2:4

σλ(�2)=
√
Var0

(
λ�2 (t)

)
, (5.7)

withVar0
(
λ�2

(t)
)
defined as in the Appendix. In Appendix A, we also provide a

closed-form approximation, obtained using the Gaussian mapping technique,
as in Brigo and Mercurio (2001).

A foreign expansion provides a diversification benefit if

σλ(�2)< σλ(�0).

This can happen because, after the expansion, λ�2
(t) depends on λdi , but also

on the different risk source λ
f
i that may be non perfectly correlated with λdi for

i= 1, . . . ,m.
Moreover, if there are multiple target portfolios for a foreign expansion, a

possible way to decide about the optimal expansion target would be to choose
the portfolio that provides the lowest σλ(�∗).

5.3. Similarity/Diversification index

Building up on the characteristics of the longevity model described in the pre-
vious section, finally, we propose the Similarity and Diversification index, as
follows. Let ndi be the number of annuities written on cohort xi belonging to the
domestic population, nfi the number of annuities written on cohort xi belong-
ing to the foreign population, ni = ndi + nfi and m the number of generations in
the initial, domestic portfolio. Then the DI is equal to:

DI = 1
m

m∑
i=1

nfi (1− δi)
ni

, (5.8)

and the Similarity Index (SI)5 is

SI = 1−DI . (5.9)

The DI is model-specific, and it represents a weighted average of the dissim-
ilarities between the same cohorts in different populations,6 present in both
the initial portfolio and in the portfolio after the expansion. Dissimilarities are
captured by the complement to 1 of δi, the generation-specific parameter that
captures the degree of correlation between the same generation of the different
populations. The weights, nfi /ni, are given, for each cohort in the initial portfo-
lio, by the number of annuities in the foreign population (after the expansion)
relative to the total number of annuities written on that cohort in both popu-
lations. We average the weighted dissimilarities across all the m cohorts of the
domestic population initially present in the annuity portfolio.
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Our proposed indicator has the following properties. First, 0≤DI ≤ 1. If
δi = 1 for every i, that is, the two portfolios are written on perfectly corre-
lated populations, then, obviously, SI = 1 and DI = 0. On the other hand, if
δi = 0, for every i, which means that the intensities of the foreign population are
independent of the risk factor of the domestic, the DI does not go to 1 indepen-
dently of the portfolio composition. If nfi → ∞ and ndi remains constant, then
SI → 0, DI → 1. This happens because the longevity risk of the foreign pop-
ulation is completely idiosyncratic and therefore diversification is reaped only
enlarging the foreign portfolio as much as possible. This shows that the DI
appropriately reflects both the properties of the intensity correlation structure
and the portfolio mix chosen by the underwriter.7

Further insights on the properties and indications deriving from the three
measures presented will emerge from the application in Section 6, but let us
comment briefly on them before going on.

The percentage risk margin has the advantage of being expressed in eco-
nomic terms, allowing a comparison between the economic benefit of a foreign
expansion and its implementation cost, and between the benefits of competing
target portfolios. Among the three measures, the percentage risk margin is the
only one that can capture the impact of the term structure of interest rates on
the economic benefit of geographical longevity risk diversification. However,
computing it – for our proposed model, at least – requires Monte Carlo simu-
lations, making it the most computationally expensive measure among the ones
presented.

The standard deviation of the portfolio mortality intensity does not require
Monte Carlo simulations, if Gaussian mapping is used, and can provide similar
information to the risk margin when comparing different expansion strate-
gies. It is able to capture the entire dependence structure between the domestic
and foreign generations, but it is simply a distributional property and not a
monetary measure.

The DI is the easiest measure to compute because it does not require Monte
Carlo simulations or the estimation of a correlation matrix. However, it does
not capture the entire dependence structure between the domestic and foreign
generations and, therefore, can provide useless indications when the target for-
eign portfolio population shows low dependence across generations and when
the diversification benefit of grouping different cohorts belonging to different
populations is large.

6. APPLICATION

In this section, we calibrate our proposed model and try to quantify the diver-
sification gains deriving from an international expansion toward Italy of an
initially UK-based annuity portfolio versus a domestic expansion. Notice that
our model is asymmetric in nature: the calibration thus is not insensitive to the
choice of the labels of “domestic” and “foreign” populations. In what follows
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TABLE 1

DOMESTIC POPULATION (UK) CALIBRATION RESULTS.

Age a b σ λ0 RMSE

65 2.7878× 10−5 0.0723 0.0075 0.0116 0.00035
66 6.5423× 10−5 0.0652 0.0059 0.0124 0.00028
67 1.8424× 10−5 0.0740 0.0080 0.0135 0.00035
68 5.3144× 10−5 0.0685 0.0084 0.0160 0.00043
69 1.2500× 10−4 0.0589 0.0091 0.0164 0.00039
70 8.4734× 10−5 0.0646 0.0108 0.0189 0.00056
71 7.1323× 10−5 0.0667 0.0106 0.0212 0.00038
72 4.1759× 10−5 0.0688 0.0073 0.0239 0.00040
73 2.2984× 10−5 0.0689 0.0066 0.0262 0.00063
74 9.6036× 10−5 0.0663 0.0131 0.0282 0.00040
75 3.3898× 10−5 0.0684 0.0077 0.0316 0.00049

we consider the UK population as domestic, which is more natural when
depicting the case of an expansion made by a UK-based insurer. However, we
obtained very similar (unreported) results when treating the Italian mortality
intensities as domestic, implying the robustness of our application outcomes.

6.1. Mortality intensities estimation

To calibrate our model, we proceed in two steps. First, we calibrate the
parameters of the two intensity processes of the domestic and of the foreign
population, respectively. Then, in a second step, we calibrate the correlation
parameters ρij. We calibrate the parameters of the mortality model to the gen-
erations of UK and Italian males whose age, at 31/12/2012, is between 65 and
75, that is, the cohorts born between 1937 and 1947.We consider thus 11 differ-
ent cohorts present in the initial portfolio: xi = 65, . . . , 75. We use the 1-year×
1-year cohort death rates data provided by the Human Mortality Database
and recover, using the 20 observations from 1993 and 20128 the observed con-
ditional survival probabilities, for each cohort, for the individuals alive in 1993.
The estimation of the parameters is performed minimizing the Rooted Mean
Squared Error (RMSE) between the observed and the model-implied survival
probabilities. Tables 1 and 2 report the calibrated parameters for the two popu-
lations, while Figures 1 and 2 report the actual and fitted survival probabilities
and the calibration errors, respectively. In particular, we show in Tables 3 and
4 the mean absolute percentage error (MAPE) of the model by age and year
for the two populations. The model, although parsimonious (it requires the
estimation of 4*M+6 parameters, versus the 5*M+3 parameters estimated by
Yang and Wang (2013), withM number of ages considered), is able to capture
remarkably well the survival probability curves of the two populations, for all
the cohorts considered, with an average absolute percentage errors by age as
low as less than 0.08% for all the ages considered.
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TABLE 2

FOREIGN POPULATION (IT) CALIBRATION RESULTS.

Age a′ b′ σ ′ δ RMSE λ′
0

65 0.7939 0.00045
66 0.8528 0.00017
67 0.9369 0.00038
68 0.8289 0.00036
69 0.9039 0.00045
70 1.1785× 10−4 4.7825× 10−7 0.0153 0.8362 0.00032 0.0022
71 0.8548 0.00034
72 0.8210 0.00036
73 0.8203 0.00036
74 0.8484 0.00071
75 0.8683 0.00078
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FIGURE 1: Observed and theoretical survival probabilities. The left panel shows the observed versus fitted
survival probabilities for the foreign population, while the right reports the figures for the domestic

population.
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FIGURE 2: Calibration errors.
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TABLE 3

MEAN ABSOLUTE PERCENTAGE ERROR BY AGE.

65 66 67 68 69 70 71 72 73 74 75

UK 0.03% 0.02% 0.03% 0.04% 0.04% 0.06% 0.04% 0.03% 0.06% 0.04% 0.04%
ITA 0.04% 0.01% 0.03% 0.03% 0.04% 0.03% 0.03% 0.03% 0.03% 0.07% 0.08%

6.2. Correlation matrix estimation

After having estimated the cohort-specific parameters of the two populations,
we turn to the estimation of their correlation structure. Having chosen a non-
Gaussian process for the mortality intensities of the cohorts, we are not able
to derive a formula for their correlations in closed form. However, to esti-
mate correlations, we can apply the Gaussian Mapping technique, proposed
in Brigo and Mercurio (2001) and Brigo and Alfonsi (2005), and described in
Appendix A. This gives an approximation, which however has been proven to
be accurate in similar contexts,9 as in Brigo and Alfonsi (2005). Such technique
allows to obtain a closed-form approximation of the correlations between the
intensities of the different cohorts by mapping a CIR process into a Vasicek
process that is as close as possible to the original one, in the sense that it has the
same survival probabilities. The correlation between the CIR processes λdi (t)
and λdj (t) is approximated by the correlation between the Vasicek processes
λVi (t) and λVj (t), defined in Appendix A:

Corr0(λdi (t), λ
d
j (t))≈Corr0(λVi (t), λ

V
j (t)) = Cov0(λVi (t),λ

V
j (t))√

Var0
[
λVi (t)

]
Var0
[
λVj (t)

]
= 2ρij

bi+bj · e(bi+bj )t−1√
(e2bi t−1)(e

2bj t−1)
bibj

. (6.1)

To estimate the correlation parameters, first the parameters of the process
described by (A.4) are recovered. Then, using the central mortality rates data
available in the UK life tables,10 we estimate the instantaneous correlations
ρij between dλi and dλj by inverting the approximated correlation expression
(6.1). To compute the correlations between the 11 cohorts involved, we start
from the central mortality rates in 1968 of the people aged between 1 and 11,
and we follow the diagonal of the life table until we reach the central mortality
rates of the people aged between 65 and 75 years in 2012. The central mortality
rates table constructed this way has dimension 65× 11 and allows to estimate
the correlation coefficients which we report in Table 5. The upper and lower
confidence bounds are computed with bootstrapping from 10, 000 resampled
samples with replacement. Each sample has dimension 65× 11 and is obtained
by randomly choosing 65 times with replacement a row of our original central
mortality table. As expected, because of the similarity between the UK and
the Italian populations, correlations are close to 1 with tight 95% confidence
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TABLE 4

MEAN ABSOLUTE PERCENTAGE ERROR BY TIME.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UK 0.02% 0.04% 0.06% 0.07% 0.08% 0.07% 0.06% 0.04% 0.04% 0.03% 0.02% 0.02% 0.03% 0.03% 0.03% 0.04% 0.03% 0.02% 0.02% 0.03%
ITA 0.01% 0.02% 0.02% 0.02% 0.03% 0.03% 0.04% 0.05% 0.05% 0.06% 0.06% 0.05% 0.04% 0.04% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/asb.2021.12

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. Fundacion M

apfre Centro de D
ocum

entacion, on 20 Sep 2021 at 07:19:13, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.12
https://www.cambridge.org/core


392
C
.D

E
R
O
SA

,E
.L

U
C
IA

N
O

A
N
D

L
.R

E
G
IS

TABLE 5

INSTANTANEOUS CORRELATION MATRIX UK POPULATION WITH UPPER AND LOWER 95% CONFIDENCE BOUNDS FROM BOOSTRAPPING.

65 66 67 68 69 70 71 72 73 74 75

UB (0.99938) (0.999000) (0.998716) (0.998124) (0.997751) (0.997741) (0.997332) (0.997197) (0.99709) (0.996878)
65 1 0.996614 0.993845 0.992351 0.990865 0.989791 0.988837 0.987733 0.987419 0.987183 0.986708
LB (0.9909) (0.983627) (0.980001) (0.977076) (0.974617) (0.97186) (0.969869) (0.968956) (0.968354) (0.966995)

UB (0.999378) (0.999558) (0.999358) (0.999023) (0.99862) (0.998523) (0.998186) (0.998116) (0.998188) (0.997826)
66 0.996614 1 0.999089 0.998491 0.997805 0.99704 0.996548 0.995866 0.995682 0.995693 0.995174
LB (0.991186) (0.998287) (0.997043) (0.995688) (0.994296) (0.993232) (0.991792) (0.991525) (0.991261) ( 0.990592)

UB (0.999017) (0.999559) (0.999578) (0.999456) (0.999219) (0.999085) (0.998907) (0.998915) (0.998813) (0.998598)
67 0.993845 0.999089 1 0.999317 0.999113 0.998707 0.998423 0.998021 0.997997 0.997849 0.997468
LB (0.983628) (0.998268) (0.999077) (0.998673) (0.997955) (0.997325) (0.996572) (0.996455) (0.996298) (0.995615)

UB (0.998679) (0.999353) (0.99958) (0.99971) (0.999449) (0.999293) (0.999087) (0.999063) (0.999027) (0.998571)
68 0.992351 0.998491 0.999317 1 0.999553 0.999168 0.998931 0.998549 0.99852 0.998456 0.997807
LB (0.979943) (0.997032) (0.999073) (0.999417) (0.998807) (0.998385) (0.997821) (0.997697) (0.997582) (0.99674 )

UB (0.998116) (0.99904) (0.999447) (0.99971) (0.999733) (0.999568) (0.999369) (0.999376) (0.999438) (0.9989)
69 0.990865 0.997805 0.999113 0.999553 1 0.999569 0.999189 0.999009 0.999047 0.999114 0.998333
LB (0.97749) (0.995701) (0.998669) (0.999414) (0.999343) (0.998844) (0.998593) (0.998596) (0.998586) (0.997635)
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TABLE 5

CONTINUED.

65 66 67 68 69 70 71 72 73 74 75

UB (0.997754) (0.998619) (0.999221) (0.999444) (0.999732) (0.999625) (0.99954) (0.999555) (0.999654) (0.999236)
70 0.989791 0.99704 0.998707 0.999168 0.999569 1 0.999263 0.99927 0.999281 0.999448 0.998791
LB (0.974657) (0.99433) (0.998) (0.998816) (0.999344) (0.998901) (0.998917) (0.998931) (0.999094) (0.998258)

UB (0.997714) (0.998512) (0.999078) (0.999293) (0.999566) (0.999631) (0.999724) (0.999777) (0.999767) (0.999632)
71 0.988837 0.996548 0.998423 0.998931 0.999189 0.999263 1 0.999609 0.999689 0.999442 0.999444
LB (0.972173) (0.993218) (0.997347) (0.998366) (0.998853) (0.998884) (0.999512) (0.999578) (0.999165) (0.999215)

UB (0.997296) (0.998214) (0.998897) (0.999096) (0.999366) (0.999541) (0.9997259 (0.999917) (0.999875) (0.999819)
72 0.969828 0.991711 0.996482 0.997807 0.99859 0.998918 0.999511 1 0.999779 0.999616 0.999536
LB (0.9909) (0.983627) (0.980001) (0.977076) (0.974617) (0.97186) (0.969869) (0.968956) (0.968354) (0.966995)

UB (0.997148) (0.998104) (0.99892) (0.999065) (0.999377) (0.999555) (0.999777) (0.999919) (0.9999) (0.999822)
73 0.987419 0.995682 0.997997 0.99852 0.999047 0.999281 0.999689 0.999862 1 0.999732 0.999698
LB (0.969095) (0.991471) (0.996389) (0.997707) (0.998618) (0.998915) (0.999575) (0.99978) (0.999586) (0.99955)

UB (0.997123) (0.998201) (0.998815) (0.999026) (0.999433) (0.999655) (0.999763) (0.999876) (0.999898) (0.999815)
74 0.987183 0.995693 0.997849 0.998456 0.999114 0.999448 0.999442 0.999746 0.999732 1 0.999547
LB (0.968577) (0.991343) (0.996281) (0.997581) (0.998579) (0.999085) (0.999171) (0.999618) (0.999585) (0.99928)

UB (0.996825) (0.997807) (0.998599) (0.998586) (0.998896) (0.999231) (0.999633) (0.999817) (0.999819) (0.999811)
75 0.986708 0.995174 0.997468 0.997807 0.998333 0.998791 0.999444 0.999701 0.999698 0.999547 1
LB (0.968182) (0.99056) (0.995587) (0.9967) (0.997637) (0.998261) (0.999215) (0.999532) (0.999552) (0.999285)
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394 C. DE ROSA, E. LUCIANO AND L. REGIS

bounds, but they tend to decrease with the distance between the initial ages
of the two considered cohorts. This behavior aligns with the intuition that the
changes leading to longevity improvements (such as healthy habits or med-
ical advancements) have different impact on different generations and that
cohort effects are at play. Table 6 reports instead the correlations across the
two populations. Also in this case, the correlations appearing in the diagonals
are the highest, and they tend to decrease along the rows and column dimen-
sions, indicating the presence of common cohort effects across populations.
Figure 3 shows the covariances between the different UK cohorts and between
the UK and Italian cohorts. The two generations with the lowest covariance
are the 66-year-old UK and 66-year-old Italian cohorts. Both the UK and
Italian 66-year-old cohorts are the ones with the lowest covariance with all
other generations in the other country.

6.3. Evaluating the diversification gains in terms of risk margin

Because the oldest cohort considered in our application is 75, and we assume a
maximum life span of ω = 105 years, we fix the time horizon of our simulations
to 30 years. Consistent with this choice, we consider a constant interest rate of
2%, matching the 30-year risk-free-rate indicated by EIOPA for the calculation
of technical provisions. The choice of a constant interest rate term structure
allows us to isolate and capture any possible added benefit specifically due
to the geographical diversification of an annuity portfolio. The time horizon
at which the Risk Margin is computed is 15 years. This choice is justified
because we want to focus on the medium-long term benefits of geographical
diversification. Consistently with the Solvency II regulation, we select a
confidence level α = 99.5% when calculating the Risk Margin associated to the
portfolio.

Initial Portfolio
The UK Insurer has an initial portfolio �0 made of 1000 contracts sold to
males whose age, at 31/12/2012, is between 65 and 75 years. The distribution of
contracts among ages reflects the proportions of individuals aged between 65
and 75 years in the UK national population. For instance, since in the general
UK population 69 years old constitute 11.00% of all the people aged between
65 and 75 years, the domestic portfolio contains 110 contracts sold to 69 years
old (see Table 7).

The initial Actuarial Value AV�0 (0) of the portfolio is

AV�0 (0)= 1.4104× 104, (6.2)

while the Risk Margin computed at time 0 is

RM�0 (0)= 1.1838× 103. (6.3)
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TABLE 6

CORRELATION BETWEEN POPULATIONS WITH UPPER AND LOWER 95% CONFIDENCE BOUNDS FROM BOOSTRAPPING. ROWS ARE UK GENERATIONS WHILE
COLUMNS ARE ITA GENERATIONS.

65 66 67 68 69 70 71 72 73 74 75

UB (0.958536) (0.979156) (0.980102) (0.97169) (0.972043) (0.97753) (0.976328) (0.978398) (0.970923) (0.977916) (0.963227 )
65 0.958536 0.976454 0.97503 0.965521 0.964995 0.969704 0.967647 0.968971 0.961354 0.968185 0.953476
LB (0.958536) (0.971023) (0.965148) (0.953324) (0.951457) (0.955025) (0.950993) (0.951074) (0.943368) (0.950217) (0.934664)

UB (0.958504) (0.980357) (0.981229) (0.972916) (0.973531) (0.978934) (0.977709) (0.979876) (0.972373) (0.979556) (0.964782)
66 0.955861 0.980357 0.980761 0.972075 0.972336 0.97739 0.975777 0.977536 0.969978 0.977114 0.962233
LB (0.950595) (0.980357) (0.979968) (0.970672) (0.970352) (0.974748) (0.972428) (0.973557) (0.965942 ) (0.972905) (0.957943)

UB (0.958127) (0.9799) (0.98163) (0.973106) (0.973914) (0.979498) (0.978242) (0.980498) (0.973106) (0.980139) (0.965516)
67 0.953179 0.979438 0.98163 0.972854 0.973585 0.978999 0.977588 0.979627 0.972208 0.979203 0.964426
LB (0.943524) (0.978657) (0.98163) (0.972614) (0.97315) (0.978292) (0.976524) (0.97819) (0.970704) (0.977606) (0.962632)

UB (0.957858) (0.979697) (0.98122) (0.973526) (0.974171) (0.979732) (0.978443) (0.980683) (0.973254) (0.980351) (0.965512)
68 0.951754 0.978859 0.980966 0.973526 0.97402 0.979458 0.978092 0.980151 0.972725 0.979807 0.964761
LB (0.940025) (0.977399) (0.980725) (0.973526) (0.97388) (0.979109) (0.977554) (0.979404) (0.971887) (0.978966) (0.963694)

UB (0.957178) (0.979304) (0.981013) (0.973156) (0.974367) (0.979922) (0.978629) (0.980861) (0.973472) (0.980681) (0.965729)
69 0.950242 0.978098 0.980677 0.973002 0.974367 0.979762 0.978255 0.980513 0.97315 0.980363 0.965181
LB (0.936819) (0.976141) (0.980238) (0.972864) (0.974367) (0.979541) (0.977932) (0.980107) (0.972719) (0.979836) (0.964518)

UB (0.956916) (0.978959) (0.980822) (0.972937) (0.974142) (0.980224) (0.978725) (0.981078) (0.973685) (0.980934) (0.966091)
70 0.949249 0.977386 0.980317 0.972666 0.973986 0.980224 0.978367 0.98081 0.973417 0.980729 0.965663
LB (0.934764) (0.974749) (0.979582) (0.972317) (0.973764) (0.980224) (0.978001) (0.980467) (0.973071) (0.980377) (0.965158)
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TABLE 6

CONTINUED.

65 66 67 68 69 70 71 72 73 74 75

UB (0.956931) (0.978951) (0.980825) (0.972915) (0.974108) (0.979987) (0.979213) (0.981381) (0.974022) (0.981165) (0.966604)
71 0.948454 0.977027 0.980163 0.972558 0.973739 0.979625 0.979213 0.981268 0.973937 0.980846 0.966417
LB (0.932229) (0.973718) (0.979085) (0.972032) (0.973406) (0.979262) (0.979213) (0.981174) (0.973829) (0.980572) (0.966199)

UB (0.956826) (0.978961) (0.980921) (0.973006) (0.97419) (0.980186) (0.979232) (0.981944) (0.974446) (0.981556) (0.967063)
72 0.947671 0.976645 0.980056 0.972471 0.973848 0.97992 0.979119 0.981944 0.974391 0.981429 0.96695
LB (0.930941) (0.972758) (0.978568) (0.971745) (0.973446) (0.979576) (0.979026) (0.981944) (0.97431) (0.9813) (0.966792)

UB (0.956183) (0.978327) (0.980331) (0.972373) (0.973617) (0.979602) (0.978686) (0.981261) (0.973933) (0.980987) (0.966475)
73 0.946796 0.975871 0.979435 0.971852 0.973294 0.979335 0.978599 0.981204 0.973933 0.980824 0.966357
LB (0.928455) (0.971803) (0.977957) (0.971019) (0.97287) (0.978985) (0.978489) (0.981125) (0.973933) (0.980677) (0.966211)

UB (0.955689) (0.977943) (0.979815) (0.971933) (0.973264) (0.979293) (0.978265) (0.980801) (0.973428) (0.980679) (0.96606)
74 0.946176 0.975475 0.97888 0.971384 0.972952 0.979088 0.977947 0.980676 0.973266 0.980679 0.965806
LB (0.928609) (0.971309) (0.977319) (0.970554) (0.972423) (0.978737) (0.977676) (0.980553) (0.973122) (0.980679) (0.965556)

UB (0.955982) (0.978132) (0.980179) (0.972063) (0.973293) (0.979438) (0.978696) (0.981318) (0.973913) (0.981055) (0.966801)
75 0.946262 0.975526 0.97907 0.971311 0.97275 0.979008 0.978514 0.981203 0.973792 0.980795 0.966801
LB (0.927589) (0.971166) (0.977298) (0.970242) (0.972053) (0.978498) (0.978285) (0.981041) (0.97364) (0.980536) (0.966801)
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TABLE 7

DOMESTIC PORTFOLIO COMPOSITION.

65 66 67 68 69 70 71 72 73 74 75

% in the
national
population

9.68 9.79 9.98 10.34 11.00 10.10 10.10 8.43 8.10 7.36 6.56

�0 97 98 100 103 110 101 86 84 81 74 66

TABLE 8

FOREIGN PORTFOLIO COMPOSITION.

65 66 67 68 69 70 71 72 73 74 75

% in the
national
population

10.31 10.73 10.48 10.39 8.01 8.18 8.26 8.09 8.09 8.86 8.60

�F 103 107 105 104 80 82 83 81 81 89 86
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FIGURE 3: Left Panel: Covariance matrix between UK generations. Right Panel: Covariance matrix
between Italian and UK generations.

Hence, the initial portfolio value is

�0(0)=AV�0 (0)+RM�0 (0)= 1.5288× 104. (6.4)

The Risk Margin accounts for 8.39% of the initial portfolio Actuarial Value
and σλ(�0)= 0.00124.

Portfolio �F is exposed to the foreign population only, distributed among
ages according to Table 8, useful for comparison. As we did for the initial
portfolio, we assume that the policyholders’ distribution reflects the propor-
tion of individuals belonging to each generation between 65 and 75 in the
Italian population (see Table 8). Figure 4 shows the different percentage of
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398 C. DE ROSA, E. LUCIANO AND L. REGIS

individuals per cohort in the UK and Italian population. For the foreign
portfolio �F , the risk margin is 7.39% and σλ(�F )= 0.00107. One could guess
that by expanding toward Italy, the UK underwriter could, at most, reduce his
risk margin to this level. However, we will show later on that, thanks to the
diversification effect, the risk margin of the underwriter can be even lower.

Domestic Expansion
With a domestic expansion, we assume that the Insurer doubles the size of her
annuity portfolio, selling additional policies to her domestic population, that
is, the UK population. The new portfolio �1 is therefore composed of 2000
contracts and is obtained by simply doubling the number of contracts for each
generation. Hence,

AV�1 (0)= 2.8208× 104, (6.5)

RM�1 (0)= 2.3676× 103, (6.6)

�1(0)= 3.0576× 104. (6.7)

The Risk Margin proportion relative to actuarial value is unaffected by the
size of the portfolio and still accounts for 8.39% of the actuarial value of
the domestically expanded portfolio. Similarly, also the portfolio mortality
standard deviation remains unchanged. In this case, the diversification index
between �0 and �1 − �0 is 0, as no diversification gain can be obtained.
However, some diversification gains could be obtained through a domestic
expansion, in case the new portfolio had a different composition, in terms of
policyholders’ ages, than the initial one.

Foreign Expansion
In case of a Foreign Expansion, we assume that the Insurer doubles the number
of policies in its annuity portfolio by selling contracts written on policyholders
belonging to the foreign population. The composition of the foreign portfolio
per cohort is assumed to follow the same proportions of the Italian popula-
tion11 (see Figure 4). The new portfolio �2 is, therefore, composed of 1000
contracts sold to the UK population composing the initial portfolio and of
1000 contracts written on the Italian population, �2 = �0 + �F (both dis-
tributed as described in Table 7). It has the following actuarial value and risk
margin:

AV�2 (0)= 2.8872× 104, (6.8)

RM�2 (0)= 2.2749× 103, (6.9)

As a consequence,

�2(0)= 3.1147× 104. (6.10)

For this portfolio, the Risk Margin accounts for 7.87% of the Actuarial
Value, reduced, as expected, by 0.52 percentage points relative to the one of
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FIGURE 4: Domestic and foreign portfolio composition.

the initial portfolio. The portfolio mortality standard deviation σλ(�2) consis-
tently decreases to 0.00115, and the diversification index increases to 0.0746.
The diversification gain provided by the Foreign portfolio just described can
be further exploited. We then explore alternative portfolios and summarize the
results in terms of actuarial values, risk margins and total values in Table 9.

Portfolio �3 represents a more aggressive foreign expansion, where the
number of policies sold to each generation of foreign policyholders is twice the
number of policies in �F . Tilting the portfolio towards the foreign population
has the effect of decreasing the percentage risk margin (7.71%) and the portfo-
lio mortality standard deviation (0.00112), while increasing the diversification
index (0.0992). However, it is evident that, at most, by increasing the exposure
to the Italian population, the risk margin can not be lower than 7.39%, which
is the risk margin of the Foreign portfolio. This suggests to optimize the port-
folio mix using not only the diversification across populations, but also across
generations.

The portfolio �1
opt is obtained diversifying within the UK population. Its

composition is optimized to obtain the minimum risk margin achievable, under
the constraint that the number of new contracts is 1000. It can then be con-
sidered as the maximally diversified portfolio, in the absence of geographical
diversification. The maximum diversification is thus obtained by selling 1000
annuities to the UK 66 years old, whose mortality intensity process shows the
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400 C. DE ROSA, E. LUCIANO AND L. REGIS

TABLE 9

EFFECTS OF GEOGRAPHICAL DIVERSIFICATION (r= 2%).

Portfolio AV RM � %RM σλ(�) DI

�0 1.4104× 104 1.1838× 103 1.5288× 104 8.39 0.00124 –
�F 1.4768× 104 1.0912× 103 1.5586× 104 7.39 0.00107 –
�1 2.8208× 104 2.3676× 103 3.0576× 104 8.39 0.00124 0
�2 2.8872× 104 2.2749× 103 3.1147× 104 7.87 0.00115 0.0746
�3 4.3631× 104 3.3646× 103 4.7005× 104 7.71 0.00112 0.0992
�1

opt 3.0187× 104 1.9950× 103 3.2182× 104 6.61 0.00096 0
�2

opt 3.0790× 104 1.8998× 103 3.2690× 104 6.17 0.00091 0.0121

minimum covariance with the other UK cohorts (see the left panel of Figure
3). Notice that the percentage risk margin of this portfolio is 6.61%, which is
lower than 7.39%. Being entirely composed of UK annuitants, this portfolio
has a null DI, but due to its composition, is able to reduce σλ to 0.00096.

Similarly, �2
opt is obtained allowing for geographical diversification and

optimizing the composition of the foreign portfolio. The optimization is per-
formed by looking at the covariance matrix between the two populations (see
right panel of Figure 3) and choosing to concentrate the foreign expansion
on the Italian 66 years old males, who have the lowest covariance with all
the cohorts of the UK population. The risk margin of �2

opt is 6.17% and σλ

is 0.00091. The percentage risk margin of portfolio �2
opt and its σλ are the low-

est among the portfolios we have considered. The DI of this last portfolio is
small compared to the DIs of the other portfolios involving an international
expansion, being 0.0121. It is small because the expansion is performed by con-
centrating the sales of policies in the foreign population in one generation only.
Notice that the DI and %RM reduction differ more when the portfolio added
to the initial one is optimized across generations than when it is not. This hap-
pens because the DI – by definition, to be kept simple – does not capture the
effects of putting different weights on generations with low covariance within
population, while the percentage risk margin and the portfolio mortality stan-
dard deviation capture the entire dependence structure between populations
and generations. Indeed, the DI provides a non-dollar measure of diversifica-
tion which “averages” the contributions of different generations and penalizes
any concentration in a particular one, even though the latter is justified by a
strategy which aims at minimizing the risk margin reduction. This is why we
presented all the three measures.

6.4. Sensitivity analysis

Table 10 reports the results for the different portfolios considered in Section
6.3, under the assumption of a zero interest rate, that is r= 0%. Under this
lower interest rate level, the magnitude of longevity risk is more severe, as
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TABLE 10

EFFECTS OF GEOGRAPHICAL DIVERSIFICATION (r= 0%).

Portfolio AV RM � %RM σλ(�) DI

�0 1.7656× 104 1.9408× 103 1.9596× 104 10.99 0.00124 –
�F 1.8614× 104 1.8109× 103 2.0425× 104 9.72 0.00107 –
�1 3.5311× 104 3.8815× 103 3.9193× 104 10.99 0.00124 0
�2 3.6270× 104 3.7701× 103 4.0040× 104 10.39 0.00115 0.0746
�3 5.4885× 104 5.5786× 103 6.0464× 104 10.16 0.00112 0.0992
�1

opt 3.8182× 104 3.3155× 103 4.1497× 104 8.68 0.00096 0
�2

opt 3.9079× 104 3.1565× 103 4.2235× 104 8.07 0.00091 0.0121

expected: the percentage Risk Margins are higher for all portfolios, increas-
ing in the best-case scenario to 8.07%, up from 6.17%. However, diversification
as measured by the %RM is even more valuable, because the reduction from
the initial portfolio to �2

opt portfolio is almost 3 percentage points. The DI and
portfolio mortality standard deviation, instead, by definition, are not affected
by the change in the interest rate, because the weights appearing in (5.3) and
(5.8) are expressed in nominal terms (number of annuities written on a genera-
tion) rather than in value terms (value of the annuity portfolios on the different
generations, for instance).

We finally assess the impact of the parameter δi on the portfolio diversi-
fication following an expansion. In Section 6.3, we considered two countries,
the UK and Italy, that belong to the same continent and share many simi-
lar features. As a consequence, also their past mortality dynamics were not so
dissimilar. We expect, however, that more different countries show way lower
similarity, and thus lower δ’s between cohort intensities. We perform, then, a
simulation study where the parameters of the foreign population are set as in
Table 2, with the only exception of the parameters δi, which we assume to be
a constant δ for every generation i. The interest rate is set to r= 2%, as in our
base case. We exogenously set δ to a value that ranges from 0.1 to 0.9. When δ

is close to 0, the dynamics of the mortality intensities of the domestic and the
foreign populations are orthogonal. Thus, the international expansion targets a
foreign population whose mortality dynamics is very different from the domes-
tic one. In this case, we expect the maximum level of diversification gains from
an international expansion. As δ increases, the correlation between the mor-
tality intensities of the two populations increases as well. When δ is close to
1, the mortality dynamics of the domestic and foreign population are perfectly
correlated. In this last case, we can expect the lowest level of longevity risk
diversification gains from an international expansion strategy. We compute,
for each level of δi, the DI, the portfolio mortality standard deviation and the
percentage risk margin reduction, for the portfolios �2 and �2

opt described in
Section 6.3.

As expected, the highest values of both the percentage risk margin reduc-
tion and the DI, for both portfolios, are achieved when δi is close to 0. The
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402 C. DE ROSA, E. LUCIANO AND L. REGIS

FIGURE 5: Left Panel: Percentage Risk Margin reduction under different exogenous δi = δ for every i
assumption. Center Panel: Portfolio Mortality Standard Deviation under different exogenous δi = δ for every

i. Right Panel: Diversification under different exogenous δi = δ for every i.

percentage risk margin reduction is 4% in this case, showing that sizable ben-
efits from geographical diversification are possible. Such benefits, measured in
terms of either the risk margin reduction or the DI, decrease as δ approaches 1.
The optimal portfolio expansion �2

opt provides consistently higher risk margin
reduction than �2, and the gap between the two strategies widens as δ increases
(see the left panel of Figure 5). On the contrary, strategy �2 shows a higher DI
with respect to �2

opt, for every δ.
The DI tends to 0 for both portfolios as δ goes to 1. Instead, while the

percentage risk margin reduction for �2 goes to zero when δ is 1, portfolio
expansion �2

opt offers a diversification benefit relative to the initial portfolio
even in that case. This happens because the expansion is targeted in this case
to a specific generation. The effects of the international expansion are analo-
gous to those that can be obtained by targeting the domestic expansion to the
generation which shows the lowest covariance with the others: �2

opt reduces the
percentage risk margin as much as �1

opt.
Given their properties, and the evidence from this sensitivity analysis, the

DI and the standard deviation of the portfolio mortality intensity can be an
extremely easy-to-handle and useful tool when choosing among competing
target foreign populations in an international expansion. The percentage risk
margin reduction, being a percentage monetary measure of the diversification
gains, is better suited, instead, to select the best strategy when different alterna-
tive foreign portfolio compositions can be targeted, once the candidate foreign
population has been selected.

7. CONCLUSIONS

In this paper, we discussed the benefits of geographically diversified portfolios,
due to the nonperfect correlation between the dynamics of the mortality rates
of different populations.

Our application, based on an annuity portfolio written on the UK and the
Italian populations, shows that the effects of an international diversification
are sizable. Expanding internationally decreases the volatility of the portfolio
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mortality intensity up to 26%. Under a 0% interest rate assumption, we showed
that an optimally designed expansion can lower the percentage risk margin,
relative to the actuarial value of the portfolio, by almost 4 percentage points.

The example in the paper can be considered as conservative, since the
two populations of UK and Italy present rather similar historical mortality
dynamics. The diversification effect is shown to be more relevant the lower the
correlation between intensities.

The diversification benefits of an international expansion may happen to
be counterbalanced by the costs connected to the foreign portfolio acquisition
process. These costs that are – say – the fixed costs of opening a foreign affili-
ate, or the fees required by the agents involved in the M&A operation, may be
substantial. As an alternative to a physical expansion, the insurer may obtain
the same diversification benefit operating on the longevity derivatives market.
Longevity derivatives, and longevity swaps in particular, are bespoke transac-
tions between (re)insurers and funds or companies that agree to exchange fixed
cash flows and cash flows linked to the survivorship of a particular population
(see Blake et al., 2006 for instance). The buyer of the protection provided by
a longevity swap transfers the longevity risk linked to a given reference pop-
ulation to the seller, who in turn becomes exposed to such risk. In our case,
the insurer can expand internationally by receiving a fixed periodical fee and
paying the realized survivorship of the foreign cohorts. Thus, the risk margin
reduction benefits of a foreign expansion can be replicated by selling protec-
tion through a swap. Even in this case, however, the costs of structuring the
agreement and coping with informational asymmetries (Biffis et al., 2016) can
substantially reduce the diversification gains. Appendix B shows how to com-
pare the physical and swap-based expansions, when the swap fee is fair, based
on their costs.

We interpret our results as one of the possible explanations of the higher
degree of internationalization of insurance companies with respect to banks
after the adoption of Solvency II. Because of the synthetic possibility to diver-
sify through longevity transfer agreements and longevity swaps, our results also
explain the high number of such contracts recently signed in the marketplace
and the attention dedicated to the growth of the market capacity (Blake et al.,
2018).

NOTES

1. Notice that the number of parameters in the model outlined in what follows may be further
reduced by linking the value of the parameters across ages using functional forms.

2. For the empirical application in Section 6, we will consider the easiest case of no dependence
on the initial age xi.

3. In principle, linear affine coefficients a′, b′, and σ ′ could be chosen.
4.

Var0(λ�2
(t))=Var0

( m∑
i=1

wd,�2

i λdi (t)+
m∑
i=1

wf ,�2

i λ
f
i (t)
)

(7.1)

=Var0
( m∑

i=1

wd,�2

i λdi (t)
)

+Var0
( m∑

i=1

wf ,�2

i λ
f
i (t)
)
+ (7.2)
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+ 2Cov0
( m∑

i=1

wd,�2

i λdi (t),
m∑
i=1

wf ,�2

i λ
f
i (t)
)

(7.3)

=
m∑
i=1

[
(wd,�2

i )2 + (wf ,�2

i )2δ2i
]
Var0(λdi (t))+ (7.4)

+
m∑
i=1

(wf ,�2

i )2(1− δi)2Var0(λ′(t))+ (7.5)

+ 2
∑
i<j

(wd,�2

i wd,�2

j +wf ,�2

i wf ,�2

j δiδj)Cov0(λdi (t), λ
d
j (t))+ (7.6)

+ 2
∑
i<j

wf ,�2

i wf ,�2

j (1− δi)(1− δj)Var0(λ′(t))+ (7.7)

+ 2
m∑
i=1

m∑
j=1

wd,�2

i wf ,�2

j δjCov0(λdi (t), λ
d
j (t)), (7.8)

5. Since we are only averaging over the generations belonging to the domestic portfolio, the
Similarity Index defined in Equation (5.9) should be interpreted as a synthetic measure of the
similarity relative to the domestic population. If insteadm is defined as the number of generations
in the foreign portfolio, the resulting measure should be interpreted as the similarity with respect
to the foreign portfolio.

6. Indeed, by construction, the DI does not take into account the diversification benefit across
different generations in the two populations.

7. The intuition behind the derivation of the DI as compared to σλ(�2) is as follows. From
the definition of λ�2

(t) and from (4.2), we observe that:

λ�2
(t)=

m∑
i=1

wd,�2

i λdi (t)+
m∑
i=1

wf ,�2

i λ
f
i (t)

=
m∑
i=1

wd,�2

i λdi (t)+
m∑
i=1

wf ,�2

i δiλ
d
i (t)+

m∑
i=1

wf ,�2

i (1− δi)λ′(t). (7.9)

The last term in (7.9) can be interpreted as the source of the diversification benefit, and each
coefficient of the summation wf ,�2

i (1− δi) can be interpreted as the diversification contribution of
each foreign generation i. Hence, the DI can be seen as the average diversification contribution
of each generation in the foreign portfolio.
As shown by diagram (A.17) in Appendix A for the dependence structure between the foreign
and domestic generations, we can say that σλ(�2) captures both the horizontal and the vertical
dependence, while DI only focuses on the first one.

8. These correspond to the last 20 observations available to date for the Italian males.
However, since the UK data set is updated until 31/12/2013, we have excluded the last available
observation for the UK cohorts.

9. In an unreported simulated robustness analysis, we find aMean Absolute Percentage Error
of the Gaussian Mapping estimates of about 9% consistently across all age pairs.

10. Source: Human Mortality Database.
11. Inserting the exact composition of the UK population is a trivial extension.
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APPENDIX A. VARIANCE COVARIANCE
STRUCTURE OF THEMORTALITY INTENSITIES

The time-t variance of the intensity of a generation i belonging to the domestic population,
λdi , conditional on the information at time 0 is available in closed form and is equal to

Var0
(
λdi (t)

)= aiσ 2
i

2b2i

(
ebit − 1

)2 + σ 2
i

bi
ebit

(
ebit − 1

)
λdi (0). (A.1)

Similarly, the conditional variance of λ
f
i (t) is

Var0
(
λ
f
i (t)

)= δ2i Var0
(
λdi (t)

)+ (1− δi)2Var0
(
λ′(t)

)
, (A.2)

where

Var0
(
λ′(t)

)= a′(σ ′)2

2(b′)2
(
eb

′t − 1
)2 + (σ ′)2

b′ eb
′t(eb′t − 1

)
λ′(0). (A.3)

Since the mortality of the domestic generations follow a square-root process, there is no
closed-form expression for the covariance between the intensities of the two generations i
and j. However, we can obtain a closed-form approximation using the Gaussian Mapping
(Brigo and Alfonsi, 2005) technique, as follows. For each CIR process, we consider a
Vasicek process driven by the same Brownian MotionWi(t), having the same drift and the
same initial point of the CIR process:

dλVi (t)= (ai + biλVi (t))dt+ σVi dWi(t), λVi (0)= λdi (0). (A.4)

The instantaneous volatility coefficient σVi of (A.4) is then determined by making the
two processes as close as possible, in the sense that they return the same survival probability:

Sdi (t,T)= SVi (t,T ;σ
V
i ). (A.5)
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The technique relies on the application of Itô’s Lemma to the solution to the SDE (A.4),
which is given by:

λVi (t)= λVi (0)e
bit + ai

bi

(
1− ebit

)+ σVi

∫ t

0
ebi(t−s) dWi(s). (A.6)

Therefore, we have that:

E0
[
λVi (t)

]= λVi (0)e
bit + ai

bi

(
1− ebit

)
(A.7)

Var0
[
λVi (t)

]= (σVi )2

2bi

√
e2bit − 1. (A.8)

Since λVi (t)−E0
[
λVi (t)

]= σVi

∫ t
0 e

bi(t−s) dWi(s), the covariance between λVi (t) and λVj (t) is:

Cov0(λ
V
i (t), λ

V
j (t))=E0

[
σVi σVj

( ∫ t

0
ebi(t−s) dWi(s)

)( ∫ t

0
ebj (t−s) dWj(s)

)]

=E0

[
σVi σVj ρij

∫ t

0
e(bi+bj )(t−s) ds

]

= σVi σVj ρij

∫ t

0
e(bi+bj )(t−s) ds

= σVi σVj ρij

bi + bj

(
e(bi+bj )t − 1

)
. (A.9)

Finally, we have:

Corr0(λ
V
i (t), λ

V
j (t))=

Cov0(λVi (t), λ
V
j (t))√

Var0
[
λVi (t)

]
Var0

[
λVj (t)

]
= 2ρij
bi + bj

· e(bi+bj )t − 1√
(e2bit−1)(e2bj t−1)

bibj

. (A.10)

According to such technique, we have that

Cov0
(
λdi (t), λ

d
j (t)

)= σVi σVj ρij

bi + bj

(
e(bi+bj )t − 1

)
, (A.11)

where σVi and σVj are the instantaneous volatilities resulting from the mapping of λdi and λdj
into Gaussian processes.

From (4.1) and (4.2) we have that the covariance between the same generation i
belonging to the domestic and foreign population can be written as:

Cov0
(
λdi (t), λ

f
i (t)

)= δiVar0
(
λdi (t)

)
. (A.12)

Considering, instead, two different generations i and j belonging to the foreign population,
we have that

Cov0
(
λ
f
i (t), λ

f
j (t)

)= δiδjCov0
(
λdi (t), λ

d
j (t)

)+ (1− δi)(1− δj)Var0
(
λ′(t)

)
. (A.13)
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Finally, the covariance between the mortality intensity of generation i belonging to the
foreign population and generation j belonging to the domestic is given by:

Cov0
(
λ
f
i (t), λ

d
j (t)

)= δiCov0
(
λdi (t), λ

d
j (t)

)
. (A.14)

Thanks to the GaussianMapping technique we can also compute the conditional correlation
between two generations belonging to two different populations. Considering 0≤ u≤ t, the
conditional correlation between λdxi (t) and λ

f
xj (t) is given by:

Corru
[
λdxi (t), λ

f
xj (t)

]= δj
Covu(λdxi (t), λ

d
xj (t))√

Varu(λdxi (t)) ·Varu(λfxj (t))
, (A.15)

where Covu(λdxi (t), λ
d
xj (t)) is computed using the Gaussian mapping technique, and

Varu(λ
f
xj (t))= δ2j Varu(λ

d
xj (t))+ (1− δj)2Varu(λ′(t;xj)). (A.16)

From (A.14), it is interesting to notice that the covariance between λ
f
i and λdj depends both

on δi, which measures the dependence between the same generation i across the two popula-
tions, and on Cov0

(
λdi , λ

d
j

)
, which instead measures the dependence between the generations

i and j within the domestic population.

λ
f
i λdi

λdj

Cov
(
λ
f
i , λ

d
j

)

δi

Cov
(
λdi , λ

d
j

)

(A.17)

Diagram (A.17) visualizes that, when computing the covariance λ
f
i and λdj , we are able to

disentangle the effect of the two types of dependence: the within-population and the cross-
population ones. The importance of (A.17) can be explained with a simple example. Suppose
there are two portfolios belonging to two populations f1 and f2 that are competing targets of
a foreign expansion, and suppose that each portfolio is composed of annuities sold only to
one generation k. The objective of the expansion is to find a foreign portfolio that minimizes
Cov

(
λ
f∗
k , λ

d
j

)
, to obtain the maximum level of longevity risk diversification. Since we cannot

change the covariance structure of the domestic population, the solution to the problem is
to find the portfolio �f∗ such that

f∗ = arg min
x∈{f1,f2}

(
δxk

)
. (A.18)
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Then, it is sufficient to compare the δ’s of the two competing foreign populations. For
instance, if δ

f1
k < δ

f2
k , then the optimal foreign expansion target portfolio is �f1 .

APPENDIX B. PHYSICAL VERSUS SYNTHETIC
EXPANSION

A foreign portfolio expansion like the one we considered with portfolio �2
opt is in reality

very difficult to achieve, because it is unlikely that an insurer can target the sale of annuity
contracts only to a specific cohort. Even if the expansion is feasible, it is likely to entail some
cost C0 > 0. Therefore, the real value of the liabilities of the insurer following the optimal
foreign portfolio expansion can be rewritten as:

�̄2
opt = �2

opt +C0. (B.1)

On the other hand, the same level of geographical diversification could be synthetically
obtained through a longevity swap. Consider our UK life insurer with portfolio �0, and
assume that she sells a longevity swap written on 1000 individuals aged 66 belonging to the
Italian population. Being the seller of the swap, the UK insurer will receive every year, until
the maturity of the contract, a fixed amount equal to K and will pay a stochastic amount
given by the realized survival rate of the Italian 66 years old males. Let the maturity of the
swap be T = ω and assume independence between mortality and interest rate risk. From the
point of view of the seller, the value at time t of the longevity swap is:

L(t,T)= 1000
T−t∑

T =t+1

[K − S66(t, T )]D(t, T )= (B.2)

= 1000
T−t∑

T =t+1

Et

[
K − exp

(
−
∫ T

t
λ66(s)ds

)]
Et

[
exp

(
−
∫ T

t
r(u)du

)]
,

where K is the swap rate, S66(t, T ) is the (t, T )-Survival probability for a 66 years old Italian
male and D(t, T ) is the discount factor. If the swap is fairly priced, the swap rate is chosen
in such a way that the value of the contract is zero at inception, that is:

K =

T−t∑
T =1

E

[
exp

(
−
∫ T

0
λ66(s)ds

)]
E

[
exp

(
−
∫ T

0
r(u)du

)]

T−t∑
T =1

E

[
exp

(
−
∫ T

0
r(u)du

)] .

In our calibration, assuming a constant interest rate of 2%, we have that K = 0.7295.
The actuarial value of �̃2

opt is then

AV
�̃2
opt

(t)=AV
�2
opt

(t),
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The risk margin of �̃2
opt is:

RM
�̃2
opt
(t)=D(t, t+T) ·VaRα

(
AV

�̃2
opt
(t+T)−Et[AV�̃2

opt
(t+T)]

)
(B.3)

=D(t, t+T) ·VaRα

(
AV

�2
opt

(t+T)−Et

[
AV

�2
opt
(t+T)

])
(B.4)

=RM
�2
opt
(t). (B.5)

So, if fairly priced at inception, the longevity swap allows the insurer to achieve the same
actuarial value and the same risk margin of a physical sale of annuity contracts to the Italian
males. The sales of the longevity swap may entail some initial cost C′

0 given, for instance, by
the required due diligence actions. Hence, the value of the liability portfolio �̃2

opt is given by:

�̃2
opt = �2

opt +C′
0. (B.6)

As long as C′
0 <C0, the UK insurer will find in the synthetic expansion trough the longevity

swap a more attractive solution.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2021.12
Downloaded from https://www.cambridge.org/core. Fundacion Mapfre Centro de Documentacion, on 20 Sep 2021 at 07:19:13, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2021.12
https://www.cambridge.org/core

	GEOGRAPHICAL DIVERSIFICATION AND LONGEVITY RISK MITIGATION IN ANNUITY PORTFOLIOS
	GEOGRAPHICAL DIVERSIFICATION AND LONGEVITY RISK MITIGATION IN ANNUITY PORTFOLIOS
	Introduction
	Background longevity literature
	Set-up
	Portfolio value
	Portfolio expansion

	Longevity risk modeling
	Mortality intensities and survival probabilities

	Measuring the longevity risk effects of geographical diversification
	Percentage risk margin
	Standard deviation of the portfolio mortality intensity
	Similarity/Diversification index

	Application
	Mortality intensities estimation
	Correlation matrix estimation
	Evaluating the diversification gains in terms of risk margin
	Sensitivity analysis

	Conclusions
	Variance Covariance Structure of the Mortality Intensities
	Physical versus Synthetic Expansion


