Búsqueda

Computing best bounds for nonlinear risk measures with partial information

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20130024226
003  MAP
005  20130829115054.0
008  130731e20130304esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20130010311‎$a‎Hong Wong, Man
24510‎$a‎Computing best bounds for nonlinear risk measures with partial information‎$c‎Man Hong Wong, Shuzhong Zhang
520  ‎$a‎Extreme events occur rarely, but these are often the circumstances where an insurance coverage is demanded. Given the first, say, n moments of the risk(s) of the events, one is able to compute or approximate the tight bounds for risk measures in the form of E(?(x)) through semidefinite programmings (SDP), via distributional robust optimization formulations. Existing results in the literature have already demonstrated the power of this technique when ?(x) is linear or piecewise linear. In this paper, we extend the technique in the case where ?(x) is a polynomial or fractional polynomial.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎04/03/2013 Volumen 52 Número 2 - marzo 2013
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A