Búsqueda

On inequalities for moments and the covariance of monotone functions

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20140014279
003  MAP
005  20140506102102.0
008  140424e20140303esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20140007554‎$a‎Schmidt, Klaus D.
24510‎$a‎On inequalities for moments and the covariance of monotone functions‎$c‎Klaus D. Schmidt
520  ‎$a‎Intuition based on the usual interpretation of the covariance of two random variables suggests that the inequality source should hold for any random variable X and any two increasing functions f and g. The inequality holds indeed, but a proof is hard to find in the literature. In this paper we provide an elementary proof of a more general inequality for moments and we present several applications in actuarial mathematics.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎03/03/2014 Volumen 55 Número 1 - marzo 2014
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A