Búsqueda

Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20140023806
003  MAP
005  20140709121738.0
008  140704e20140505esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20140011322‎$a‎Fu, Ke-Ang
24510‎$a‎Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims‎$c‎Ke-Ang Fu, Cheuk Yin Andrew Ng
520  ‎$a‎Consider a continuous-time renewal risk model, in which the claim sizes and inter-arrival times form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. Suppose that the surplus is invested in a portfolio whose return follows a Lévy process. When the claim-size distribution is dominatedly-varying tailed, asymptotic estimates for the finite- and infinite-horizon ruin probabilities are obtained.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎05/05/2014 Volumen 56 Número 1 - mayo 2014
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A