Analysis of non-linear response of the human body to vertical whole-body vibration
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140045600</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20141203104158.0</controlfield>
<controlfield tag="008">141202e20140311esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">875</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Analysis of non-linear response of the human body to vertical whole-body vibration</subfield>
<subfield code="c">Marco Tarabini...[et.al]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The human response to vibration is typically studied using linear estimators of the frequency response function, although different literature works evidenced the presence of non-linear effects in whole-body vibration response. This paper analyses the apparent mass of standing subjects using the conditioned response techniques in order to understand the causes of the non-linear behaviour. The conditioned apparent masses were derived considering models of increasing complexity. The multiple coherence function was used as a figure of merit for the comparison between the linear and the non-linear models. The apparent mass of eight male subjects was studied in six configurations (combinations of three vibration magnitudes and two postures). The contribution of the non-linear terms was negligible and was endorsed to the change of modal parameters during the test. Since the effect of the inter-subject variability was larger than that due to the increase in vibration magnitude, the biodynamic response should be more meaningfully modelled using a linear estimator with uncertainty rather than looking for a non-linear modelling.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20100019818</subfield>
<subfield code="t">Ergonomics : the international journal of research and practice in human factors and ergonomics</subfield>
<subfield code="d">Oxon [United Kingdom] : Taylor & Francis, 2010-</subfield>
<subfield code="x">0014-0139</subfield>
<subfield code="g">03/11/2014 Volumen 57 Número 11 - noviembre 2014 </subfield>
</datafield>
</record>
</collection>