Búsqueda

On the distribution of sums of random variables with copula-induced dependence

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150002181</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150122171259.0</controlfield>
    <controlfield tag="008">150113e20141103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130010380</subfield>
      <subfield code="a">Gijbels, Irène</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">On the distribution of sums of random variables with copula-induced dependence</subfield>
      <subfield code="c">Irène Gijbels, Klaus Herrmann</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We investigate distributional properties of the sum of d possibly unbounded random variables. The joint distribution of the random vector is formulated by means of an absolutely continuous copula, allowing for a variety of different dependence structures between the summands. The obtained expression for the distribution of the sum features a separation property into marginal and dependence structure contributions typical for copula approaches. Along the same lines we obtain the formulation of a conditional expectation closely related to the expected shortfall common in actuarial and financial literature. We further exploit the separation to introduce new numerical algorithms to compute the distribution and quantile function, as well as this conditional expectation. A comparison with the most common competitors shows that the discussed Path Integration algorithm is the most suitable method for computing these quantities. In our example, we apply the theory to compute Value-at-Risk forecasts for a trivariate portfolio of index returns.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/11/2014 Volumen 59 Número 1 - noviembre 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>