Búsqueda

Notes on discrete compound Poisson model with applications to risk theory

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150002471</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150122171255.0</controlfield>
    <controlfield tag="008">150113e20141103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150002884</subfield>
      <subfield code="a">Zhang, Huiming</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Notes on discrete compound Poisson model with applications to risk theory</subfield>
      <subfield code="c">Huiming Zhang, Yunxiao Liu, Bo Li</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Probability generating function (p.g.f.) is a powerful tool to study discrete compound Poisson (DCP) distribution. By applying inverse Fourier transform of p.g.f., it is convenient to numerically calculate probability density and do parameter estimation. As an application to finance and insurance, we firstly show that in the generalized CreditRisk+ model, the default loss of each debtor and the total default of all debtors are both approximately equal to a DCP distribution, and we give Le Cam¿s error bound between the total default and a DCP distribution. Next, we consider geometric Brownian motion with DCP jumps and derive its rth moment. We establish the surplus process of the difference of two DCP distributions, and numerically compute the tail probability. Furthermore, we define the discrete pseudo compound Poisson (DPCP) distribution and give the characterizations and examples of DPCP distribution, including the strictly decreasing discrete distribution and the zero-inflated discrete distribution with P(X=0)>0.5.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/11/2014 Volumen 59 Número 1 - noviembre 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>